轴向压缩载荷下的音板木材振动和声学响应特性研究

翟学勇1,2,苗媛媛1,2,王秀雅1,2,万珂1,2,尹玉雪1,2,刘镇波1,2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (23) : 187-193.

PDF(1976 KB)
PDF(1976 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (23) : 187-193.
论文

轴向压缩载荷下的音板木材振动和声学响应特性研究

  • 翟学勇1,2,苗媛媛1,2,王秀雅1,2,万珂1,2,尹玉雪1,2,刘镇波1,2
作者信息 +

Vibration and acoustic response characteristics of soundboard wood under axial compressive load

  • ZHAI Xueyong1,2, MIAO Yuanyuan1,2, WANG Xiuya1,2, WAN Ke1,2, YIN Yuxue1,2, LIU Zhenbo1,2
Author information +
文章历史 +

摘要

为了探究轴向压缩载荷对音板木材的振动和声学响应特性的影响,深入研究木质材料的发声机理。本研究模拟音板木材在实际装配中受到的约束和轴向压缩载荷,利用双通道快速傅里叶变换频谱分析仪(FFT)对200-1600N轴向压缩载荷作用下音板木材的振动和声学性能进行检测。分析发现,在弹性形变范围内,随着轴向压缩载荷的增大,木材的共振频率呈下降的变化规律;轴向压缩载荷与音板木材的各声学参数呈显著的线性相关。通过SEM观察发现,正常、通直的细胞壁由于轴向压缩出现不同程度的褶皱,这是音板木材振动和声学性能变化的重要原因。研究结果表明轴向压缩载荷对音板木材的振动和声学性能的影响具有较强的规律性,因预应力的存在以及微观构造的改变,其整体振动和声学性能呈下降趋势。

Abstract

In order to investigate the effect of the axial compression load on the acoustic and vibration response characteristics of soundboard wood, the sound production mechanism of wood materials was studied deeply. This study simulated the constraints and axial compression load of the soundboard wood in actual assembly, and used FFT to detect the acoustic and vibration performance of the soundboard wood under the axial compression load of 200-1600N. It was found that the resonant frequency of wood decreases with the increase of axial compression load in the elastic deformation range. There was a significant linear correlation between axial compression load and acoustic parameters of soundboard wood. Through the observation of SEM, it was found that the normal and straight cell walls appear wrinkles in different degrees due to axial compression, which is an important reason for the change of acoustic and vibration properties of soundboard wood. The results show that the effect of axial compression load on the acoustic and vibration performance of soundboard wood has a strong regularity, and the overall acoustic vibration performance tends to decrease due to the existence of prestressing and the change of microstructure.

关键词

音板木材 / 轴向压缩载荷 / 声学特性 / 声学参数 / 微观构造

Key words

soundboard wood / axial compression load / acoustic characteristics / acoustic parameters / microstructure

引用本文

导出引用
翟学勇1,2,苗媛媛1,2,王秀雅1,2,万珂1,2,尹玉雪1,2,刘镇波1,2. 轴向压缩载荷下的音板木材振动和声学响应特性研究[J]. 振动与冲击, 2021, 40(23): 187-193
ZHAI Xueyong1,2, MIAO Yuanyuan1,2, WANG Xiuya1,2, WAN Ke1,2, YIN Yuxue1,2, LIU Zhenbo1,2. Vibration and acoustic response characteristics of soundboard wood under axial compressive load[J]. Journal of Vibration and Shock, 2021, 40(23): 187-193

参考文献

[1] Robert S, Mario Z, André W. Characterization of acoustic and mechanical properties of common tropical woods used in classical guitars[J]. Results in Physics, 2017, 7:1737-1742.
[2] 刘镇波, 黄英来, 杨扬. 共鸣板用木材的振动特性与民族乐器的声学品质[M]. 北京: 科学出版社, 2016
[3] Corradi R, Miccoli S, Squicciarini G, et al. Modal analysis of a grand piano soundboard at successive manufacturing stages[J]. Applied Acoustics, 2017, 125:113-127.
[4] 郭臻宇, 连弘扬, 李丽沙,等. 炭化处理对杨木声学振动特性的影响[J]. 森林工程, 2016, 32(04):41-45+50.
GUO Zhen-yu, LIAN Hong-yang, LI Li-sha, et al. The Influence of Carbonization on the Acoustic Vibration Performance of Poplars[J]. Forest Engineering, 2016, 32(04):41-45+50.
[5] Gunji T, Obataya E, Aoyama K. Vibrational properties of harp soundboard with respect to its multi-layered structure[J]. Journal of Wood Science, 2012, 58(4):322-326.
[6] 秦丽丽, 苗媛媛, 刘镇波. 泡桐木材主要物理特征及化学组分对其声学振动性能的影响[J]. 森林工程, 2017, 033(004):34-39.
QIN Li-li, MIAO Yuan-yuan, LIU Zhen-bo. Influence of The Main Pysical Characteristics and Components Content of P. elongata on Acoustic Vibration Performance[J]. Forest Engineering, 2017, 033(004):34-39.
[7] 林斌, 翟学勇, 李瑞, 等. 桦木单板/玻璃纤维复合材料的制备工艺优化[J]. 北京林业大学学报, 2019, 41(04):131-139.
LIN Bin, ZHAI Xue-yong, LI Rui, et al. Optimization of preparation process of birch veneer/glass fiber composite[J]. Journal of Beijing Forestry University, 2019, 41(04):131-139.
[8] 宋魁彦, 王逢瑚, 宋宇宏. 水曲柳顺纹压缩多向弯曲技术[J]. 家具, 2005(03):18-22.
SONG Kui-yan, WANG Feng-hu, SONG Yu-hong. The Techniques of F.mandshuRica, Longitudinal Compressing and Bending[J]. Furniture, 2005(03):18-22.
[9] Wang D, Lin L Y, Fu F . Deformation mechanisms of wood cell walls under tensile loading: a comparative study of compression wood (CW) and normal wood (NW)[J]. Cellulose, 2020, 27: 4161–4172.
[10] Foller B, Holub M, Šesták J. Acoustic composite laminates with unidirectional fiber reinforcement by novel Structural drawing[J]. Journal of Thermal Analysis and Calorimetry, 2014, 116(2):703-707.
[11] Sedik Y, Hamdan S, Jusoh I, et al. Acoustic Properties of Selected Tropical Wood Species[J]. Journal of Nondestructive Evaluation, 2010, 29(1):38-42.
[12] 吕晓东, 苗媛媛, 林斌, 等. 层数与碳纤维方向对木质-碳纤维复合材料声学振动性能的影响[J]. 林业工程学报, 2018, 3(04):96-101.
LV Xiao-dong, MIAO Yuan-yuan, LIN Bin, et al. Study on acoustic vibration performance of wood-carbon fibercomposite materials with different laying patterns[J]. Journal of Forestry Engineering, 2018, 3(04):96-101.
[13] 李哲锋, 多化琼, 青龙. 电声乐器中木材声学振动性能对音响特性的影响[J]. 林业工程学报, 2018, 3(3):18−23.
LI Zhen-feng, DUO Hua-qiong, QING Long. Effects of acoustic vibration properties of wood on acousticcharacteristic in electronic musical instrument[J]. Journal of Forestry Engineering, 2018, 3(3):18−23.
[14] Guan C, Zhang H J, Hunt J F, et al. Determining shear modulus of thin wood composite materials using a cantilever beam vibration method[J]. Construction and Building Materials, 2016, 121:285-289.
[15] Mohammad M J, Seyyed Y M, Amir Soheil P. Investigating the acoustical properties of carbon fiber-, glass fiber-, and hemp fiber-reinforced polyester composites[J]. Polymer Composites, 2014, 35(11):2103-2111.
[16] Yang Y, Liu Y, Liu Z, et al. Prediction of Yueqin acoustic quality based on soundboard vibration performance using support vector machine[J]. Journal of Wood Science, 2016, 63(1):1-8.
[17] 林斌, 苗媛媛, 李瑞, 等. 桦木单板/玻璃纤维复合材料声学振动性能的研究[J]. 北京林业大学学报, 2019, 41(01):126-133.
LIN Bin, MIAO Yuan-yuan, LI Rui, et al. Acoustic vibration properties of birch veneer / glass fiber composites[J]. Journal of Beijing Forestry University, 2019, 41(01):126-133.
[18] Wegst U G K. Wood for sound[J]. American Journal of Botany, 2006, 93(10):1439-1448.
[19] Rajesh M, Pitchaimani J. Experimental investigation on buckling and free vibration behavior of woven natural fiber fabric composite under axial compression[J]. Composite Structures, 2017, 163:302-311.
[20] Waddar S, Pitchaimani J, Doddamani M, et al. Buckling and vibration behaviour of syntactic foam core sandwich beam with natural fiber composite facings under axial compressive loads[J]. Composites Part B Engineering, 2019, 175:107133.
[21] 唐友刚. 高等结构动力学[M]. 天津: 天津大学出版社, 2002.
[22] Anil Chopra. Dynamics of Structures[M]. 北京: 清华大学出版社, 2005.
[23] Hunt J F, Zhang H, Guo Z, et al. Cantilever Beam Static and Dynamic Response Comparison with Mid-Point Bending for Thin MDF Composite Panels[J]. Bioresources, 2012, 8(1):115-129.
[24] Valle J, Fernández D, Madrenas J. Closed-form equation for natural frequencies of beams under full range of axial loads modeled with a spring-mass system[J]. International Journal of Mechanical Sciences,2019,153-154..
[25] 刘镇波, 刘一星, 沈隽, 等. 乐器共鸣板用木材的声学特性研究进展[J]. 西北林学院学报, 2006(03):129-134.
LIU Zhen-bo, LIU Yi-xing, SHEN Juan, et al. Advances in Study and Research on Acoustic Property of Wood for Soundboardof Musical Instrument[J]. ournal of Northwest Forestry University, 2006(03):129-134.
[26] Ahmed S A, Adamopoulos S. Acoustic properties of modified wood under different humid conditions and their relevance for musical instruments[J]. Applied Acoustics, 2018, 140:92-99.
[27] Roohnia M, Kohantorabi M, Tajdini A. Maple wood extraction for a better acoustical performance[J]. European Journal of  Wood and Wood Products, 2015, 73:139-142.

PDF(1976 KB)

Accesses

Citation

Detail

段落导航
相关文章

/