受电弓舱对受电弓区域气动噪声的影响

史佳伟,葛帅,圣小珍

振动与冲击 ›› 2021, Vol. 40 ›› Issue (23) : 216-222.

PDF(3113 KB)
PDF(3113 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (23) : 216-222.
论文

受电弓舱对受电弓区域气动噪声的影响

  • 史佳伟,葛帅,圣小珍
作者信息 +

Effects of pantograph recess on aerodynamic noise in pantograph area

  • SHI Jiawei, GE Shuai, SHENG Xiaozhen
Author information +
文章历史 +

摘要

应用三维不可压缩大涡模拟模型结合Ffowcs Williams-Hawkings(FW-H)方程,对外置和下沉两种不同受电弓安装方式下受电弓区域流场和气动噪声进行数值模拟,在此基础上分析了受电弓舱对受电弓区域流场和气动噪声的影响。结果表明:受电弓舱会显著影响受电弓区域的气流流动状态进而改变受电弓表面的气动声源强度和分布;两种安装方式下,受电弓区域向轨道两侧辐射的噪声均由受电弓本身所主导;与升弓状态下的受电弓相比,受电弓舱对降弓状态下的受电弓的气动噪声的降噪效果更好。

Abstract

Using the three-dimensional incompressible large eddy simulation(LES) model combined with the Ffowcs Williams-Hawkings(FW-H) equation, the flow field and aerodynamic noise of pantograph area under external installation and sinking installation mode are simulated. Based on this, the effects of pantograph recess on flow field and aerodynamic noise are further analyzed. The results show that the pantograph recess could significantly influence the airflow state around pantograph, and then the intensity and distribution of aerodynamic noise source on the pantograph surface are changed. In addition, the noise radiated to both sides of the track is dominated by pantograph itself under the two installation mode. Also, compared with the raised-pantograph, the pantograph recess has a better noise reduction effect on the aerodynamic noise of the folded-pantograph.

关键词

高速列车 / 受电弓 / 受电弓舱 / 大涡模拟 / 气动噪声

Key words

 high speed train / pantograph / pantograph recess / large eddy simulation / aerodynamic noise;

引用本文

导出引用
史佳伟,葛帅,圣小珍. 受电弓舱对受电弓区域气动噪声的影响[J]. 振动与冲击, 2021, 40(23): 216-222
SHI Jiawei, GE Shuai, SHENG Xiaozhen. Effects of pantograph recess on aerodynamic noise in pantograph area[J]. Journal of Vibration and Shock, 2021, 40(23): 216-222

参考文献

[1] THOMPSON David. 铁路噪声与振动—机理、模型和控制方法[M]. 中国铁科学研究院节能环保劳卫研究所,译.北京: 科学出版社, 2013.
[2] THOMPSON D J, IGLESIAS E L, LIU X, et al. Recent developments in the prediction and control of aerodynamic noise from high-speed trains[J]. International Journal of Rail Transportation, 2015, 3(3): 119-150.
[3] NOGER, PATRAT, J. C, et al. Aeroacoustical study of the TGV pantograph recess[J]. Journal of Sound and Vibration, 2000, 231(3): 563-575.
[4] KURITA T. Development of external-noise reduction technologies for Shinkansen high-speed trains[J]. Journal of Environment and Engineering, 2011, 6(4): 805-819.
[5] YU H H, LI J C, ZHANG H Q. On aerodynamic noises radiated by the pantograph system of high-speed trains[J]. Acta Mechanica Sinica, 2013, 29(3): 399-410.
[6] 喻华华. 高速列车气动噪声产生与控制的机理研究[D]. 北京: 中国科学院大学, 2013.
[7] ZHANG Y D, ZHANG J Y, LI T, et al. Research on aerodynamic noise reduction for high-speed trains[J]. Shock and Vibration, 2016, 2016: 1-21.
[8] 张亚东, 韩璐, 李明, 等. 高速列车受电弓气动噪声降噪[J]. 机械工程学报, 2017, 53(06): 94-101.
Zhang Y D, Han L, Li M, et al. Reduction of aerodynamic noise of high-speed train pantograph[J]. Journal of Mechanical Engineering, 2017, 53(06): 94-101.
[9] KIM H, HU Z W, THOMPSON D J. Effect of cavity flow on high speed train pantograph aerodynamic noise[C]//INTER-NOISE and NOISE-CON Congress and Conference Proceedings. Institute of Noise Control Engineering, 2017, 255(7): 906-915.
[10] KIM H, HU Z W, THOMPSON D J. Numerical investigation of the effect of various high-speed train roof configurations on aerodynamic noise[C]//25th AIAA/CEAS Aeroacoustics Conference, 2019.
[11] 陈羽, 高阳, 王毅刚, 等. 导流罩对受电弓气动噪声影响的风洞试验研究[J]. 声学技术, 2018, 37(05): 475-481.
CHEN Y , GAO Y , WANG Y G , et al. Wind tunnel experimental research on the effect of guide cover on aerodynamic noise of pantograph[J]. Technical Acoustics, 2018, 37(05): 475-481.
[12] 孙振旭, 姚永芳, 杨焱等. 国内高速列车气动噪声研究进展概述[J].空气动力学学报, 2018, 36(03): 385-397.
SUN Z X, YAO Y F, YANG Y, et.al. Overview of the research progress on aerodynamic noise of high speed trains in China [J]. Acta Aerodynamic Sinica, 2018, 36(03): 385-397.
[13] 孔学舟, 杨明智. 受电弓下沉对高速列车气动阻力的影响[J]. 铁道科学与工程学报, 2017, 14(9): 1805-1813.
KONG X Z, YANG M Z. Influence of pantograph subsidence on high-speed train aerodynamic drag[J]. Journal of Railway ence and Engineering, 2017, 14(9): 1805-1813.
[14] 林鹏, 张业, 郭迪龙. 高速列车受电弓平台的优化设计[J]. 力学研究, 2018, 7(02): 27-35.
LIN P, ZHANG Y, GUO D L. Optimal Design of Pantograph Platform for High-Speed Trains.[J] International Journal of Mechanics Research, 2018, 7(02): 27-35.
[15] 张兆顺, 崔桂香. 流体力学. 第3版[M]. 北京: 清华大学出版社, 2015.
[16] TAN X M, YANG Z G, TAN X M, et al. Vortex structures and aeroacoustic performance of the flow field of the pantograph[J]. Journal of Sound and Vibration, 2018, 432: 17-32.
[17] ZHANG Y D, ZHANG J Y, LI T, et al. Investigation of the aeroacoustic behavior and aerodynamic noise of a high-speed train pantograph[J]. Science China Technological Sciences, 2017, 60(4): 561-575.
[18] HOLMÉN V. Methods for vortex identification[J]. Master’s Theses in Mathematical Sciences, 2012.

PDF(3113 KB)

Accesses

Citation

Detail

段落导航
相关文章

/