波浪面对车桥气动特性影响下的车桥系统耦合仿真研究

郭晨,崔圣爱,曾慧姣,张猛,祝兵

振动与冲击 ›› 2021, Vol. 40 ›› Issue (23) : 260-268.

PDF(4435 KB)
PDF(4435 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (23) : 260-268.
论文

波浪面对车桥气动特性影响下的车桥系统耦合仿真研究

  • 郭晨,崔圣爱,曾慧姣,张猛,祝兵
作者信息 +

Joint simulation of vehicle-bridge system with aerodynamic characteristics affected by various wave bottom surfaces

  • GUO Chen, CUI Sheng’ai, ZENG Huijiao, ZHANG Meng, ZHU Bing
Author information +
文章历史 +

摘要

为研究波浪形底面对列车-桥梁气动荷载影响下的车桥系统振动响应,选取平潭海峡元洪水道大桥为研究对象,固定列车车速和风速,采用流体动力学软件FLUENT,计算系统在横风作用及不同波浪形底面下列车和桥梁的气动荷载。基于有限元软件ANSYS和多体动力学软件SIMPACK建立三维列车-桥梁联合仿真模型,将得到的气动荷载通过时间激励方式施加到列车-桥梁系统中。研究相同车速和风速在不同波浪重现期下波浪形底面对气动荷载的影响以及车桥耦合振动问题。研究结果表明:(1)底面为平面时,风速剖面近似呈线性增长,且风速梯度显著大于底面为波浪形的工况;底面为波浪面时,各重现期下风场特性差异较小,波谷临近处速度梯度较小,向两侧波峰逐渐增大。(2)风场中不同重现期波浪面的改变会使列车和桥梁的气动荷载的频率、幅值大小发生不同程度的改变。(3)底部为平面时,桥梁的阻力、升力和力矩气动荷载峰值均小于底部为波浪面时的荷载峰值。(4)列车的安全性指标均随着波浪重现期的增大而增大,其中横向力和轮重减载率的增幅较明显,100年波浪重现期下列车头车横向力、减载率和横向加速度分别比无波浪时增大了13.45%、23.08%和37.61%。(5)桥梁跨中横向最大位移与横向最大加速度均随波浪重现期的增大而增大,竖向则变化不大。

Abstract

In order to study the Co-Simulation of Train-Bridge System under the aerodynamic load of the train bridge which influenced by various wave profiles. Taking the Yuanhong-channel Bridge in Pingtan Strait as the research object, the train speed and wind speed are fixed, and the hydrodynamic software FLUENT is used to calculate the aerodynamic load of the train and Bridge. A 3D train-bridge co-simulation model is established based on the FE software ANSYS and the MBD (multi-body dynamics) software SIMPACK. The aerodynamic load is obtained and applied to the train-bridge system through time excitation. Under the fixed vehicle and wind speed, dynamic indexes of train-bridge with aerodynamic load which affected by difference wave profiles were performed. The results show that: (1) when the bottom is planar, the wind speed profile increases linearly, and the wind speed gradient is significantly larger than that of the wave surface conditions; the wind field characteristics with wave profiles is small have no remarkable difference, the velocity gradient near the wave trough is small, and it gradually increase to side peaks. (2) The wave profile in different return periods will change the frequency and amplitude of train-bridge aerodynamic loads. (3) When the bottom is planar, the maximum value of resistance, lift and moment of the bridge is smaller than that of the wave profile conditions. (4) The safety indexes of train increase as the increase of wave recurrence period, in which the transverse force and wheel unload rate are more significantly. Compared with planar bottom, the transverse force, load reduction rate and transverse acceleration of 100-year wave recurrence period of the head vehicle increased by 13.45%, 23.08% and 37.61%, respectively. (5) As the increase of wave recurrence period, the maximum lateral displacement and acceleration of the mid-span become larger, while the vertical change has no significant change.

关键词

波浪形底面 / 气动荷载 / 耦合 / 联合仿真

Key words

bottom of wave profile / aerodynamic load / coupling / co-simulation

引用本文

导出引用
郭晨,崔圣爱,曾慧姣,张猛,祝兵. 波浪面对车桥气动特性影响下的车桥系统耦合仿真研究[J]. 振动与冲击, 2021, 40(23): 260-268
GUO Chen, CUI Sheng’ai, ZENG Huijiao, ZHANG Meng, ZHU Bing. Joint simulation of vehicle-bridge system with aerodynamic characteristics affected by various wave bottom surfaces[J]. Journal of Vibration and Shock, 2021, 40(23): 260-268

参考文献

[1] 黄雯. 波浪与海流作用下跨海大桥下部结构受力特性研究[D].华中科技大学,2016.
HUANG Zhan. Study on Mechenical Properties of Cross-sea Bridges Substructure under the Effects of Wave and Current [D]. Huazhong University of Science & Technology, 2016.
[2] 李永乐. 风-车-桥系统非线性空间耦合振动研究[D]. 成都:西南交通大学2003.
Nonlinear Three-Dimensional Coupling Vibration of Wind-Vehicle-Bridge System [D]. Southwest Jiaotong University, 2003.
[3] ZHANG, M. J., LI, Y. L., WANG, B. (2016). Effects of fundamental factors on coupled vibration of wind-rail vehicle-bridge system for long-span cable-stayed bridge. Journal of Central South University, 23(5), 1264-1272.
[4] 李永乐,董世赋,臧瑜,强士中.大跨度公轨两用悬索桥风-车-桥耦合振动及抗风行车准则研究[J].工程力学,2012,29(12):114-120.
LI Yong-le, DONG Shi-bin, ZANG Yu, et al. Coupling Vibration of Wind-Vehicle-Bridge System for Long-Span Road-Rail Suspension Bridge and Resistant-Wind Criterion of Running Train [J]. Engineering Mechanics, 2012, 29(12):114-120.
[5] XIA He, GUO Wei-wei, ZHANG Nang. Dynamic Analysis of A Train-Bridge System under Wind Action [J]. Computers and Structures, 2008: 1845-1855.
[6] 夏禾,徐幼麟,阎全胜.大跨度悬索桥在风与列车荷载同时作用下的动力响应分析[J].铁道学报,2002,24(4): 83-91.
XIA He, XU You-lin, YAN Quan-sheng. Dynamic Response of Long Span Suspension Bridge to High Wind and Running Train [J]. Journal of the China Railway Society, 2002, 24(4): 83-91.
[7] 郭薇薇,夏禾,徐幼麟.风荷载作用下大跨度悬索桥的动力响应及列车运行安全分析[J].工程力学,2006, 23(2): 103-110.
GUO Wei-wei, XIA He, XU You-lin. Dynamic Response of Long Span Suspension Bridge and Running Safety of Train under Wind Action [J]. Engineering Mechanics, 2006, 23(2): 103-110.
[8] 郭薇薇,夏禾,张田.桥梁风屏障的气动效应及其对高速列车运行安全的影响分析[J].工程力学, 2015,32(8):112-119.
GUO Wei-wei, XIA He, ZHANG Tian. Analysis on Aerodynamic Effects of Bridge Wind Barrier and Its Influence on Running Safety of a High-Speed Train [J]. Engineering Mechanics, 2015,32(8):112-119.
[9] 郭向荣,曾庆元.京沪高速铁路南京长江斜拉桥方案行车临界风速分析[J].铁道学报,2001,23(5):75-80.
GUO Xiang-rong, ZENG Qing-yuan. Analysis of Critical Wind Speed for Running Trains on a Schemed Yangtze River Bridge at Nanjing on Jing-Hu High Speed Railway Line [J]. Journal of the China Railway Society, 2001, 23(5): 75-80.
[10] 房忱, 李永乐, 向活跃. 波浪作用下跨海大桥列车走行性研究[J].西南交通大学学报, 2017, 52(6):1068-1074.
FANG Chen, LI Yong-le, XIANG Huo-yue. Study of Train Running Performance under Wave Load for Cross-sea Bridge[J]. Journal of Southwest Jiaotong University, 2017, 52(6):1068-1074.
[11] 李永乐,胡朋,蔡宪棠,等.紧邻高陡山体桥址区风特性数值模拟研究[J].空气动力学学报,2011,29(06):770-776.
LI Yong-le, HU Peng, CAI Xian-tang, et al. Numerical Simulation of Wind Characteristics above Bridge Site Adjacent a High-Steep Mountain [J]. Acta Aerodynamica Sinica, 2011,29(06):770-776.
[12] 陈政清,李春光,张志田,等.山区峡谷地带大跨度桥梁风场特性试验[J].实验流体力学,2008(03):54-59.
CHEN Zheng-qing, LI Chun-guang, ZHANG Zhi-tian, et al. Model Test Study of Wind Field Characteristics of Long-span Bridge Site in Mountainous Valley Terrain [J]. Journal of Experiments in Fluid Mechanics, 2008(03):54-59.
[13] 余传锦. 复杂山区桥梁大风行车安全预警系统研究[D].西南交通大学,2019.
YU Chuan-jin. Research on Wind Alarm System for Traffic Safety on Bridges in Complex Mountainous Terrain [D]. Southwest Jiaotong University, 2019.
[14] Zilker D P, Cook G W, Hanratty T J. Influence of The Amplitude of a Solid Wavy Wall on a Turbulent Flow. Part 1. Non-Separated Flows[J]. Journal of Fluid Mechanics, 1977, 82(1): 29-51.
[15] Zilker D P, Hanratty T J. Influence of the Amplitude of a Solid Wavy Wall on a Turbulent Flow. Part 2. Separated Flows[J]. Journal of Fluid Mechanics, 1979, 90(2): 257-271.
[16] Buckles J, Hanratty T J, Adrian R J. Turbulent Flow over Large-Amplitude Wavy Surfaces[J]. Journal of Fluid Mechanics, 1984, 140: 27-44.
[17] Frederick K A, Hanratty T J. Velocity Measurements for a Turbulent Nonseparated Flow over Solid Waves[J]. Experiments in fluids, 1988, 6(7): 477-486.
[18] Kuzan J D, Hanratty T J, Adrian R J. Turbulent Flows with Incipient Separation over Solid Waves [J]. Experiments in fluids, 1989, 7(2): 88-98.
[19] 许福友,陈艾荣,黄才良,张哲.大跨桥梁风洞试验模型模态耦合分析[J].中国公路学报,2009,22(03):58-63.
XU Fu-you, Chen Ai-rong, HUANG Cai-liang, et al. Modal Coupling Analysis of Long-span Bridge Model in Wind Tunnel Test [J]. China Journal of Highway and Transport, 2009,22(03):58-63.
[20] 秦绪国,刘沛清,屈秋林.翼型波浪水面巡航地面效应数值模拟[J].北京航空航天大学学报, 2011, 37(03): 295-299.
QIN Xu-guo, LIU Pei-qing, QU Qiu-lin. Numerical Simulation on Aerodynamics of Airfoil Flying Over Wavy Water Surface[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(03): 295-299.
[21] 李妍,陈希,费树岷.海浪对巡航导弹掠海飞行气动性能的影响[J]. 弹箭与制导学报, 2014, 34(03):129-132.
LI Yan, CHEN Xi, FEI Shu-min. The Research on Influence of Wave on Pneumatic Performance of Sea-skimming Cruise Missile. Journal of Projectiles, Rockets, Missiles and Guidance, 2014, 34(03):129-132.
[22] 徐进.桥下净空对大跨桥梁主梁气动特性的影响[D].湖南大学,2014.
[23] 汪荣绣. 海浪气动干扰条件下桥梁气动性能试验研究[D]. 大连理工大学, 2014.
[24] 崔圣爱.基于多体系统动力学和有限元法的车桥耦合振动精细化仿真研究[D].成都:西南交通大学土木工程学院,2009.
Refined Simulation Study between Vehicle and Bridge Based on Multi-Body System Dynamics and Finite Element Method [D]. Southwest Jiaotong University, 2009.
[25] 崔圣爱,祝兵,黄志堂.基于多体系统动力学和有限元法的联合仿真在车桥耦合振动研究中的应用[J].计算机应用研究,2009,26(12):63-67.4581-4584.
CUI Sheng-ai, ZHU Bing, HUANG Zhi-tang. Application of Co-Simulation based on Multi-Body System Dynamics and Finite Element Method in Coupled Vibration Research Between Vehicle and Bridge [J]. Application Research of Computers, 2009, 26(12): 4581-4584.
[26] 崔圣爱,祝兵.客运专线大跨连续梁桥车桥耦合振动仿真分析[J]. 西南交通大学学报,2009,44(1):66-71.
CUI Sheng-ai, ZHU Bing. Coupling Vibration Simulation of Long-Span Continuous Beam Bridge on Passenger Dedicated Railway[J]. Journal of Southwest Jiaotong University, 2009, 44(1): 66-71.
[27] RAMNEFORS M, BENSRYD R, PERZON S. Accuracy of Drag Predictions on Cars Using CFD-Effect of Grid Refinement and Turbulence Models[J]. SAE Technical Paper, 1996:960681.
[28] Bettle J, Holloway A G L, Venart J E S . A Computational Study of the Aerodynamic Forces Acting on a Tractor-Trailer Vehicle on a Bridge in Cross-Wind[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2003, 91(5):573-592.
[29] Fang, C., Li, Y. L., Wei, K., Zhang, J. Y., Liang, C. M. (2018) “Vehicle–Bridge Coupling Dynamic Response of Sea-Crossing Railway Bridge under Correlated Wind and Wave Conditions.” Advances in Structural Engineering, Vol. 229, No. 4, pp. 893-906, DOI: 10.1177/1369433218781423.

PDF(4435 KB)

Accesses

Citation

Detail

段落导航
相关文章

/