改性再生混凝土动力性能研究

王永贵1,2,李帅鹏1,Hughes Peter1,范玉辉1,高向宇3

振动与冲击 ›› 2021, Vol. 40 ›› Issue (23) : 269-278.

PDF(2669 KB)
PDF(2669 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (23) : 269-278.
论文

改性再生混凝土动力性能研究

  • 王永贵1,2,李帅鹏1,Hughes Peter1,范玉辉1,高向宇3
作者信息 +

Dynamic performance of modified recycled concrete

  • WANG Yonggui1, 2, LI Shuaipeng1, HUGHES Peter1, FAN Yuhui1, GAO Xiangyu3
Author information +
文章历史 +

摘要

为提高再生混凝土的力学性能,以玄武岩纤维和纳米氧化硅为增强材料对再生混凝土进行改良,形成玄武岩纤维与纳米氧化硅复合改性再生混凝土,通过静态抗压性能试验及分离式霍普金森压杆试验,研究了玄武岩纤维与纳米氧化硅对改性再生混凝土破坏形态及静动态抗压强度的影响。研究表明,随应变率增大,破坏形态由完整经破裂向粉碎过渡,动态抗压强度、动态增强因子、比能量吸收均呈增大趋势;取代率对试块破坏状态、动态抗压强度及比能量吸收不产生规律性影响,但静态抗压强度随取代率的增大而降低;玄武岩纤维有利于增强试块破坏时的整体性,提高了再生混凝土静态抗压强度、动态抗压强度、峰值应变及比能量吸收;纳米氧化硅有利于提高再生混凝土的静态抗压强度、动态抗压强度、峰值应变及比能量吸收。结果表明,玄武岩纤维与纳米氧化硅对再生混凝土的静动态力学性能及耗能性能具有较好的增强作用。

Abstract

In order to improve the mechanical properties of recycled concrete, basalt fiber and nano-silica are used as the reinforcing materials to improve the recycled concrete to form the composite modified recycled concrete. Through static compressive strength test and split Hopkinson pressure bar test, the influence of basalt fiber and nano-silica on the destruction form and compressive strength of recycled concrete. The results show that, as the strain rate increases, the destruction form transitions from fracture to crushing, and the dynamic compressive strength, dynamic increase factor, and specific energy absorption all increase. The replacement rate has no regular effect on the destruction form, dynamic compressive strength, peak strain and specific energy absorption, but the static compressive strength decreases with the increase of the replacement rate. Basalt fiber is conducive to enhancing the integrity of the specimen during failure, and improves the static compressive strength, dynamic compressive strength, peak strain and specific energy absorption of the recycled concrete. Nano-silica can improve the static compressive strength, dynamic compressive strength, peak strain and specific energy absorption of the recycled concrete. Studies have shown that basalt fiber and nano-silica have a good reinforcement effect on the mechanical properties and energy dissipation of recycled concrete.

关键词

玄武岩纤维 / 纳米氧化硅 / 再生混凝土 / 霍普金森压杆 / 动态抗压强度

Key words

basalt fiber / nano-silica / recycled concrete / split Hopkinson pressure bar / dynamic compressive strength

引用本文

导出引用
王永贵1,2,李帅鹏1,Hughes Peter1,范玉辉1,高向宇3. 改性再生混凝土动力性能研究[J]. 振动与冲击, 2021, 40(23): 269-278
WANG Yonggui1, 2, LI Shuaipeng1, HUGHES Peter1, FAN Yuhui1, GAO Xiangyu3. Dynamic performance of modified recycled concrete[J]. Journal of Vibration and Shock, 2021, 40(23): 269-278

参考文献

[1] 陈欣, 郑建岚, 王国杰. 预处理方法对再生混凝土收缩性能的影响[J]. 建筑材料学报, 2016, 19(5): 909-914.
CHEN Xin, ZHENG Jian-gang, WANG Guo-jie. Influence of pretreatment methods on shrinkage performance of recycled concrete [J]. Journal of Building Materials, 2016, 19(5): 909-914. (in Chinese)
[2] Shi C J, Li Y K, Zhang J K, et al. Performance enhancement of recycled concrete aggregate-A review [J]. Journal of Cleaner Production, 2016, 112: 466-472.
[3] 孔祥清, 何文昌, 邢丽丽, 等. 钢-聚丙烯混杂纤维对再生混凝土抗冲击性能的影响[J]. 复合材料学报, 2019, 36(11): 1-14.
KONG Xiang-qing, HE Wen-chang, XING Li-li, et al. Effect of steel-polypropylene hybrid fibers on the impact resistance of recycled aggregate concrete [J]. Acta Materiae Compositae Sinica, 2019, 36(11): 1-14. (in Chinese)
[4] 李文贵, 罗智予, 龙初, 等. 纳米再生骨料混凝土的动态力学性能试验研究[J]. 湖南大学学报(自然科学版), 2017, 44(9): 92-99.
LI Wen-gui, LUO Zhi-yu, LONG Chu, et al. Experimental study on the dynamical mechanical performance of nanomodified recycled aggregate concrete [J]. Journal of Hunan University (Natural Sciences), 2017, 44(9): 92-99. (in Chinese)
[5] Wael A, Omar A. Flexural behavior of basalt fiber reinforced concrete beams with recycled concrete coarse aggregates [J]. Construction and Building Materials, 2018, 169: 165-178.
[6] Bernal J, Reyes E, Massana J, et al. Fresh and mechanical behavior of a self-compacting concrete with additions of nano-silica, silica fume and ternary mixtures [J]. Construction and Building Materials, 2018, 160: 196-210.
[7] 王永贵, 牛海成, 范玉辉. 改性再生混凝土抗压性能与微观结构[J]. 中国矿业大学学报, 2019, 48(5): 1012-1019.
WANG Yong-gui, NIU Hai-cheng, FAN Yu-hui. Compressive properties and microstructure of modified recycled aggregate concrete [J]. Journal of China University of Mining & Technology, 2019, 48(5): 1012-1019. (in Chinese)
[8] León N, Massana J, Alonso F. Effect of nano-SiO2 and nano-Al2O3 on cement mortars for use in agriculture and livestock production [J]. Biosystems Engineering, 2014, 123: 1-11.
[9] Mohseni E, Naseri F, Amjadi R, et al. Microstructure and durability properties of cement mortars containing nano-TiO2 and rice husk ash [J]. Construction and Building Materials, 2016, 114: 656-664.
[10] Khosravani M R, Weinberg K. A review on split Hopkinson bar experiments on the dynamic characterisation of concrete [J]. Construction and Building Materials, 2018, 190: 1264-1283.
[11] Hassan M, Wille K. Comparative experimental investigations on the compressive impact behavior of fiber-reinforced ultra high-performance concretes using split Hopkinson pressure bar [J]. Construction and Building Materials, 2018, 191: 398-410.
[12] Su Y, Li J, Wu C, et al. Influences of nano-particles on dynamic strength of ultra-high performance concrete [J]. Composites Part B, 2016, 91: 591-609.
[13] 朱迎, 马芹永. 纳米SiO2和玄武岩纤维增强混凝土压拉强度的试验研究[J]. 科学技术与工程, 2016, 16(11): 240-243, 248.
ZHU Ying, MA Qin-yong. Experiment Research on Compressive and Tensile Strength of Nano-SiO2 Concrete with Basalt Fiber [J]. Science Technology and Engineering, 2016, 16(11): 240-243, 248. (in Chinese)
[14] Kathuda H, Shatarat N. Improving the mechanical properties of recycled concrete aggregate using chopped basalt fibers and acid treatment [J]. Construction and Building Materials, 2017, 140: 328-335.
[15] 黄凯健, 邓敏. 玄武岩纤维耐碱性及对混凝土力学性能的影响[J]. 复合材料学报, 2010, 27(1): 150-154.
HUANG Kai-jian , DENG Min. Stability of basalt fibers in alkaline solution and its effect on the mechanical property of concrete [J]. Acta Materiae Compositae Sinica, 2010, 27(1): 150-154. (in Chinese)
[16] 燕兰, 邢永明. 纳米SiO2对钢纤维/混凝土高温后力学性能及微观结构的影响[J]. 复合材料学报, 2013, 30(3): 133-141.
YAN Lan, XING Yong-ming. Influence of nano-SiO2 on mechanical properties and microstructure of steel fiber reinforced concrete after heating at high temperatures [J]. Acta Materiae Compositae Sinica, 2013, 30(3): 133-141. (in Chinese)
[17] 王立闻, 庞宝君, 盖秉政, 等. 活性粉末混凝土高温后冲击压缩特性研究[J]. 工程力学, 2012, 29(9): 245-251.
WANG Li-wen, PANG Bao-jun, GAI Bing-zheng, et al. Investigation of dynamic compression properties of reactive powder concrete after exposure in high temperature [J]. Engineering Mechanics, 2012, 29(9): 245-251. (in Chinese)
[18] 施劲松, 许金余, 任韦波, 等. 高温后混凝土冲击破碎能耗及分形特征研究[J]. 兵工学报, 2014, 35(5): 703-710.
SHI Jin-song, XU Jin-yu, REN Wei-bo, et al. Research on energy dissipation and fractal characteristics of concrete after exposure to elevated temperatures under impact loading [J]. Acta Armamentarii, 2014, 35(5): 703-710. (in Chinese)
[19] Lu Y, Chen X, Teng X, et al. Dynamic compressive behavior of recycled aggregate concrete based on split Hopkinson pressure bar tests [J]. Latin American Journal Solids and Structures, 2014, 11(1): 131-141.
[20] Xiao J Z, Li L, Shen L M, et al. Compressive behaviour of recycled aggregate concrete under impact loading [J]. Cement Concrete Research, 2015, 71: 46-55.

PDF(2669 KB)

408

Accesses

0

Citation

Detail

段落导航
相关文章

/