基于小波包频带稀疏编码的非完备信息条件下轴承状态识别

马云飞1,2,贾希胜2,胡起伟2,郭驰名2,邢鹏2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (23) : 288-294.

PDF(2470 KB)
PDF(2470 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (23) : 288-294.
论文

基于小波包频带稀疏编码的非完备信息条件下轴承状态识别

  • 马云飞1,2,贾希胜2,胡起伟2,郭驰名2,邢鹏2
作者信息 +

Bearing state recognition based on sparse coding for wavelet packet frequency bands without complete prior knowledge

  • MA Yunfei 1,2, JIA Xisheng2, HU Qiwei2, GUO Chiming2, XING Peng2
Author information +
文章历史 +

摘要

针对传统稀疏编码不够精细的问题,提出一种小波包频带稀疏编码算法。首先对原始信号进行小波包分解和最优频带选择,对每个最优频带分别训练一个过完备稀疏字典,并将待测试信号每个频带的压缩重构误差作为新的稀疏编码,利用灰色B型绝对关联度降维得到最终退化特征。考虑到轴承正常运行状态和严重摩擦状态容易识别,建立基于上述两种状态的非完备信息条件下轴承退化状态评估模型,根据设定好的门限值设置预警线。利用公开轴承全寿命数据进行仿真分析,发现新的稀疏编码特征其预警线临界点早于传统稀疏编码特征,从而能够更早发布故障报警。此外,对新稀疏编码算法的判别性、抗噪性和时间复杂度进行了研究。

Abstract

Aiming at the problem that traditional sparse coding is not accurate enough, the sparse coding on wavelet packet frequency bands was proposed. First, the wavelet packet decomposition and optimal frequency bands selection were performed on the original signal. Over-complete sparse dictionaries were trained for each optimal frequency band. The compression and reconstruction errors of each frequency band for the signal to be tested were used as the new sparse codes. To obtain final degradation features, the absolute grey relational degree of B-mode method was used here for dimension reduction. Considering that the normal running state and serious friction state of the bearing are easy to identify, an evaluation model under incomplete information based on the above two states was established, and an early warning line was set according to the threshold preset. The simulation analysis of public bearing full life data show that the new sparse coding feature has an early warning line critical point earlier than that of traditional sparse coding feature, thus the fault alarms can be issued earlier. In addition, the discrimination, noise immunity and time complexity of the new sparse coding algorithm were also studied.

关键词

稀疏编码 / 灰色B型绝对关联度 / 退化状态识别 / 轴承 / 压缩感知

Key words

 sparse coding / absolute grey relational degree of B-mode / degradation state recognition / bearing / compressive sensing;

引用本文

导出引用
马云飞1,2,贾希胜2,胡起伟2,郭驰名2,邢鹏2. 基于小波包频带稀疏编码的非完备信息条件下轴承状态识别[J]. 振动与冲击, 2021, 40(23): 288-294
MA Yunfei 1,2, JIA Xisheng2, HU Qiwei2, GUO Chiming2, XING Peng2. Bearing state recognition based on sparse coding for wavelet packet frequency bands without complete prior knowledge[J]. Journal of Vibration and Shock, 2021, 40(23): 288-294

参考文献

[1] 甘茂治, 康建设, 高崎. 军用装备维修工程学[M]. 北京:国防工业出版社, 2005, 7.
[2] ZHANG S N, KANG R, HE X F and PECHT M G. China's efforts in prognostics and health management[J]. IEEE Transactions on Components and Packaging Technologies, 2008, 31(2): 509-518.
[3] 张俊宁, 张培林, 李兵, 吴定海等. 非完备先验知识下的滑动轴承摩擦状态识别[J]. 航空动力学报, 2017, 32(7): 1704-1711.
ZHANG J N, ZHANG P L, LI B, et al. Plain bearing friction state recognition without complete prior knowledge [J]. Journal of Aerospace Power, 2017, 32(7): 1704-1711.
[4] ELAD M., AHARON M. Image denoising via sparse and redundant representations over learned dictionaries [J]. IEEE Transactions on Image Processing, 2006, 15: 3736-3745.
[5] YANG S Y, WANG M, CHEN Y G, SUN Y X. Single-image super-resolution reconstruction via learned geometric dictionaries and clustered sparse coding [J]. IEEE Transactions on Image Processing, 2012, 21: 4016-4028.
[6] YANG B, LI S T. Multifocus image fusion and restoration with sparse representation [J]. IEEE Transactions on Instrumentation & Measurement, 2010, 59: 884-892.
[7] WRIGHT J, YANG A Y, GANESH A, SASTRY S S, MA Y. Robust face recognition via sparse representation [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2009, 31: 210-227.
[8] ZHANG X P, HU N Q, HU L, CHEN L, CHENG Z. A bearing fault diagnosis method based on the low-dimensional compressed vibration signal [J]. Advances in Mechanical Engineering, 2015, 7(7): 1-12.
[9] TANG G, YANG Q, WANG H Q, LUO G G, MA J W. Sparse classification of rotating machinery faults based on compressive sensing strategy, Mechatronics, 2015, 31: 60-67.
[10] YU F J, ZHOU F. Classification of machinery vibration signals based on group sparse representation [J]. Journal of Vibroengineering, 2016, 18(3): 1540-1554.
[10] ELAD M, STARCK J L, QUERRE P, DONOHO D L. Simultaneous cartoon and texture image impainting using morphological component analysis(MCA)[J]. Applied & Computational Harmonic Analysis, 2005, 19(3): 340-358.
[11] 苗中华, 周广兴, 刘海宁, 刘成良. 基于稀疏编码的振动信号特征提取算法与实验研究[J]. 振动与冲击, 2014, 33(15): 76-81.
MIAO Z H, ZHOU G X, LIU H N, LIU C L. Study on Experiments and Feature Extraction Algorithm of vibration signals Based on Sparse Coding [J]. Journal of Vibration and Shock, 2014, 33(15): 76-81.
[12] 余建波, 刘海强, 郑小云, 周炳海等. 基于ITD与稀疏编码收缩的滚动轴承故障特征提取方法[J]. 振动与冲击, 2018, 37(19): 23-29.
YU J B, LIU H Q, ZHENG X Y, ZHOU B H, et al. Fault feature extraction method of rolling bearings based on ITD-SCS [J]. Journal of Vibration and Shock, 2018, 37(19): 23-29.
[13] 王维刚, 刘占生. 基于改进判别字典学习的故障诊断方法[J]. 振动与冲击, 2016, 35(4): 110-114.
WANG W G, LIU Z S. Fault diagnosis method based on improved discriminative dictionary learning [J]. Journal of Vibration and Shock, 2016, 35(4): 110-114.
[14] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52 (4 ) : 1289-1306.
[15] TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Transactions on Information Theory, 2007, 53 (12): 4655-4666.
[16] WANG J, KWON S, SHIM B. Generalized interaction matching pursuit [J]. IEEE Transactions on Signal Processing, 2012, 60(12): 6202-6216.
[17] AHARON M, ELAD M, BRUCKSTEIN A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322.
[18] MA Y F, JIA X S, HU Q W, XU D M, et al. Laplace prior-based Bayesian compressive sensing using K-SVD for vibration signal transmission and fault detection [J] Electronics, 2019, 8(5).
[19] 邵晓刚.基于矩阵灰色B型绝对关联度的人脸检测算法研
究[D]. 长春:东北师范大学, 2012.
SHAO X G. The research of the face detection algorithm taking matrix absolute grey relational degree of B-mode as core[D]. Changchun: Northeast Normal University, 2012.

PDF(2470 KB)

Accesses

Citation

Detail

段落导航
相关文章

/