新型橡胶-电磁复合主被动隔振器研究

任明可1,2,谢溪凌1,2,黄志伟3,张志谊1,2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (23) : 32-37.

PDF(2028 KB)
PDF(2028 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (23) : 32-37.
论文

新型橡胶-电磁复合主被动隔振器研究

  • 任明可1,2,谢溪凌1,2,黄志伟3,张志谊1,2
作者信息 +

Novel rubber-electromagnetic composite active/passive vibration isolator

  • REN Mingke1,2, XIE Xiling1,2, HUANG Zhiwei3, ZHANG Zhiyi1,2
Author information +
文章历史 +

摘要

船舶动力设备是船舶振动噪声的重要来源,其运行过程中产生的宽带和低频线谱振动对舱室噪声和水下辐射噪声具有重要影响。针对船用动力设备质量大、振动强的特点,提出一种结构紧凑的低频橡胶隔振器与线性电磁作动器复合的主被动隔振器,并分别对被动隔振器的静态承载能力、电磁作动器的驱动力以及主被动隔振效果进行了仿真分析和测试,结果表明橡胶隔振器可承受15吨载荷,具有线性刚度,电磁作动器力常数可达72N/A,与频域加权的干扰重构Fx-LMS控制算法相结合,能大幅抑制300Hz以内的线谱振动,主被动联合隔振效果优异。

Abstract

The broadband and low-frequency tonal vibration generated by power equipment has an important impact on the cabin noise and underwater acoustic radiation of vessels. A passive/active vibration isolator is proposed to support heavy marine power equipment and attenuate vibration transmission. Since it is difficult for the conventional Fx-LMS algorithm to attenuate multiple harmonics of different amplitudes equally in practice, a frequency domain weighting technique is introduced to the adaptive algorithm to improve the frequency response characteristics of the control channel and increase the proportion of weakly controllable harmonic components in error signals. The static bearing capacity of the rubber isolator, the driving force of the actuator and the performance of the passive/active vibration isolation are investigated. The results show that the rubber isolator is of linear stiffness and able to bear 15-ton payload, and the estimated force constant of the actuator is 72N/A. Utilizing the frequency domain weighted Fx-LMS algorithm, the harmonics within 300Hz are greatly suppressed, which demonstrates the effectiveness of the passive/active vibration isolator and the improved adaptive algorithm.

关键词

动力设备 / 振动隔离 / 主被动隔振器 / 低频线谱 / 自适应控制

Key words

 power equipment / vibration isolation / passive/active vibration isolator / low frequency tonal vibration / adaptive algorithm

引用本文

导出引用
任明可1,2,谢溪凌1,2,黄志伟3,张志谊1,2. 新型橡胶-电磁复合主被动隔振器研究[J]. 振动与冲击, 2021, 40(23): 32-37
REN Mingke1,2, XIE Xiling1,2, HUANG Zhiwei3, ZHANG Zhiyi1,2. Novel rubber-electromagnetic composite active/passive vibration isolator[J]. Journal of Vibration and Shock, 2021, 40(23): 32-37

参考文献

[1] 严济宽. 机械振动隔离技术[M]. 上海: 上海科学技术文献出版社, 1986.
Yan J. Mechanical Vibration Isolation Technology[M]. Shanghai: Shanghai Scientific and Technological Literature Press, 1986
[2] 袁  扬. 船舶柴油机双层隔振设计研究[D]. 武汉: 武汉理工大学, 2017.
Yuan Y. Study and Design on the Double-layer Vibration Isolation of Marine Diesel Engine[D]. Wuhan: Wuhan University of Technology, 2017.
[3] 杨铁军, 顾仲权, 刘志刚, 等. 双层隔振系统耦合振动主动控制试验研究[J]. 振动工程学报, 2003, 02: 17-20.
Yang T, Gu Z, Liu Z, et al. Experimental Research on Active Control of Coupled Vibration for a Two-Stage Isolation System[J]. Journal of Vibration Engineering, 2003, 02: 17-20.
[4] 孙  瑶, 杨铁军, 沈  颖, 等. 弹性基础上的双层隔振结构声辐射的主动控制[J]. 振动与冲击, 2016, 35(09): 197-203.
Sun Y, Yang T, Shen Y, et al. Active Noise Control for Sound Radiated from Flexible Base of a Two-stage Vibration Isolation System[J]. Journal of Vibration and Shock, 2016, 35(09): 197-203.
[5] 况成玉, 张志谊, 华宏星. 周期桁架浮筏系统的隔振特性研究[J]. 振动与冲击, 2012, 31(02): 115-118+135.
Kuang C, Zhang Z, Hua H. Vibration Isolation Characteristics Analysis of a Floating Raft System Constructed with Periodic Truss Structures[J]. Journal of Vibration and Shock, 2012, 31(02): 115-118+135.
[6] 程世祥, 张志谊, 华宏星. 周期桁架结构浮筏隔振特性分析与实验研究[J]. 噪声与振动控制, 2011, 31(06): 5-9.
Cheng S, Zhang Z, Hua H. Analysis and Experiment on Vibration Isolation Characteristics of a Periodic Truss Raft System[J]. Noise and Vibration Control, 2011, 31(06): 5-9.
[7] 钱炫言, 何其伟, 李东昱, 等. 一种新型主被动一体化隔振器设计及特性试验研究[J]. 舰船电子工程, 2019, 39(06): 176-181+187.
Qian X, He Q, Li D, et al. Research on the Design and Test of a Novel Hybrid Vibration Isolator[J]. Ship Electronic Engineering, 2019, 39(06): 176-181+187.
[8] Li Y, He L, Shuai C, et al. Improved hybrid isolator with maglev actuator integrated in air spring for active-passive isolation of ship machinery vibration[J]. Journal of Sound and Vibration, 2017, 407: 226-239.
[9] 王俊芳. 自适应主动隔振的理论和实验研究[D]. 上海: 上海交通大学, 2008.
Wang J. Theoretical and Experimental Study on Adaptive Vibration Isolation[D]. Shanghai: Shanghai Jiao Tong University, 2008.
[10] Wang C, Xie X, Chen Y, et.al. Investigation on active vibration isolation of a Stewart platform with piezoelectric actuators[J]. Journal of Sound and Vibration, 2016, 383: 1-19.
[11] Bai M R, Liu W. Control design of active vibration isolation using μ-synthesis[J]. Journal of Sound and Vibration, 2002, 257(1): 157-175.
[12] 王  满. 自适应逆控制在振动试验装置中的应用[D]. 哈尔滨: 哈尔滨工业大学, 2017.
Wang M. Application of Adaptive Inverse Control in the Electrohydraulic Shaking Tables[D]. Harbin: Harbin Institute of Technology, 2017.
[13] 浦玉学. 自适应振动噪声主动控制若干关键问题研究[D]. 南京: 南京航空航天大学, 2015.
Pu Y. Research on Several Key Problems of Adaptive Vibration Noise Active Control[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015.
[14] 王春雨, 何  琳, 李  彦, 等. 一种改进的窄带Fx-Newton算法及在振动主动控制中的应用[J]. 振动与冲击, 2017, 36(18): 170-176+201.
Wang C, He L, Li Y, et al. Improved narrowband Fx-Newton algorithm and its application in active vibration controls[J]. Journal of Vibration and Shock, 2017, 36(18): 170-176+201.
[15] Xie X, Ren M, Zhang Z. Investigation on an adaptive method for tonal vibration suppression[J]. Journal of Vibration and Acoustics, 2020, 142(2): 1-27.
[16] 王超新. Stewart微振动隔振平台主动控制方法与实验研究[D]. 上海: 上海交通大学, 2017.
Wang C. Active Control Method and Experiment on the Stewart Platform for Micro Vibration Isolation[D]. Shanghai: Shanghai Jiao Tong University, 2017.

PDF(2028 KB)

592

Accesses

0

Citation

Detail

段落导航
相关文章

/