桥梁时变系统的张量子空间识别方法研究及试验验证

张二华1,吴涤1,刘昊1,单德山2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (23) : 66-73.

PDF(3054 KB)
PDF(3054 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (23) : 66-73.
论文

桥梁时变系统的张量子空间识别方法研究及试验验证

  • 张二华1,吴涤1,刘昊1,单德山2
作者信息 +

Tensor subspace identification method for bridge time-varying system and its test verification

  • ZHANG Erhua1, WU Di1, LIU Hao1, SHAN Deshan2
Author information +
文章历史 +

摘要

针对二维矩阵子空间系统识别方法在系统识别计算效率、抗噪性与识别能力不强的问题,基于张量平行因子分解理论,引入时间维度,提出一种新的张量子空间系统识别方法以追踪非线性桥梁系统的模态参数时变规律。将时间维度引入至二维Hankel矩阵,构建Hankel时变三维张量;基于结构振动的状态空间模型,推导建立张量子空间系统识别数学模型;运用张量因子分解理论,结合稳定图方法,平行求解系统矩阵,剔除虚假模态信息。基于两座斜拉模型桥试验,通过与滑窗子空间系统识别方法对比,验证了方法在计算效率与结果精确性上的提升,其结果表明所提方法可用于求解确定和随机非线性时变桥梁系统识别问题。

Abstract

In order to solve the problem of the weak computing efficiency, noise resistance and system identification ability of two-dimensional matrix subspace identification method, based on the theory of tensor parallel factor decomposition and introducing the time dimension, a new tensor subspace system identification method is proposed to track the time-varying law of modal parameters of nonlinear bridge systems. The time dimension is introduced into the two-dimensional Hankel matrix to construct the Hankel time-varying three-dimensional tensor. Based on the state space model of structural vibration, a mathematical model for the tensor subspace system identification is derived. By using the tensor factor decomposition theory and the stability graph method, the system matrix is solved in parallel and the false modal information is eliminated. Based on two cable-stayed model bridge tests, through the comparison with sliding window based subspace system identification methods, the improvement of calculation efficiency and result accuracy is verified. The results show that the proposed method can be used to solve the deterministic and stochastic nonlinear time-varying bridge system identification problems.

关键词

桥梁工程 / 子空间系统识别 / 张量分解 / 时变系统

Key words

bridge engineering / subspace system identification, tensor decomposition, time-varying system

引用本文

导出引用
张二华1,吴涤1,刘昊1,单德山2. 桥梁时变系统的张量子空间识别方法研究及试验验证[J]. 振动与冲击, 2021, 40(23): 66-73
ZHANG Erhua1, WU Di1, LIU Hao1, SHAN Deshan2. Tensor subspace identification method for bridge time-varying system and its test verification[J]. Journal of Vibration and Shock, 2021, 40(23): 66-73

参考文献

[1] Worden, K., & Tomlinson, G. R. Nonlinearity in structural dynamics: detection, identification and modelling[M]. Boca Raton : CRC Press,2019.
[2] Noël, J. P., & Kerschen, G. Nonlinear system identification in structural dynamics: 10 more years of progress[J]. Mechanical Systems and Signal Processing, 2017,83: 2-35.
[3] Zarbaf S E H A M, Norouzi M, Allemang R J, et al. Stay Force Estimation in Cable-Stayed Bridges Using Stochastic Subspace Identification Methods[J]. Journal of Bridge Engineering, 2017, 22(9):04017055.
[4] 徐健. 环境激励下桥梁结构模态参数自动化识别方法研究[D]. 重庆交通大学, 2017.
XU Jian. The research on automatic identification method of mode parameter for bridge structure under ambient excitation[D]. Chongqing Jiaotong University,2017.
[5] Bui T T, Wahab M A. System Identification Based on Vibration Testing of a Steel I-Beam[C]//Proceedings of the 1st International Conference on Numerical Modelling in Engineering. Berlin : Springer, 2018: 254-268.
[6] Khan I, Shan D, Li Q, et al. Temperature Effect on Continuous Modal Parameter Identification of Cable Stayed Bridge[C]// IABSE Symposium Report. 2015:1-8.
[7] Yu I N, Loh C H, Chen J D, et al. Seismic damage assessment of a base-isolated bridge using recursive subspace identification algorithm[C]//Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2018. International Society for Optics and Photonics, 2018, 10598: 1059829.
[8] 秦世强, 康俊涛, 周旺保. 考虑大幅值输入的随机子空间识别[J]. 振动、测试与诊断, 2016, 36(6):1091-1096.
QIN Shiqiang, KANG Juntao, ZHOU Wangbao. Stochastic Subspace Identification Considering Large Amplitude Inputs[J]. Journal of Vibration, Measurement & Diagnosis, 2016, 36(6):1091-1096.
[9] 陈栋军. 确定—随机子空间模态参数识别研究[D]. 西南交通大学, 2016.
CHEN Dongjun. Modal Parameters Identification by Combined Deterministic-Stochastic Subspace Identification Method[D]. Southwest Jiaotong University, 2016.
[10] Huang M C, Wang Y P, Chang M L. Damage detection of structures identified with deterministic-stochastic models using seismic data.[J]. The Scientific World Journal, 2014(1):879341.
[11] Ismail U , Uluc S , Mert A M , et al. Frequency-Domain Subspace Identification of Linear Time Periodic (LTP) Systems[J]. IEEE Transactions on Automatic Control, 2018:1-1.
[12] Van Overschee, P., & De Moor, B. L. Subspace identification for linear systems: Theory—Implementation—Applications[M]. Berlin: Springer Science & Business Media,2012.
[13] Moaveni B, Asgarieh E. Deterministic-stochastic subspace identification method for identification of nonlinear structures as time-varying linear systems[J]. Mechanical Systems & Signal Processing, 2012, 31(8):40–55.
[14] Harshman R A. Determination and proof of minimum uniqueness conditions for PARAFAC1[J]. UCLA Working Papers in phonetics, 1972, 22(111-117): 3.
[15] Bro R. PARAFAC. Tutorial and applications[J]. Chemometrics & Intelligent Laboratory Systems, 1997, 38(2):149-171.
[16] Wu P, Pan H P, Ren J, et al. A New Subspace Identification Approach Based on Principal Component Analysis and Noise Estimation[J]. Industrial & Engineering Chemistry Research, 2015, 54(18):150419152554006.
[17] 夏雄. 基于经验小波变换的桥梁结构模态参数识别[D].西南交通大学,2018.
XIA Xiong. Model Parameter Identification of Bridge Structure Based on Empirical Wavelet Transform[D]. Southwest Jiaotong University,2018.
[18] 徐佳德. 形态学滤波器在桥梁健康监测信号降噪中的应用研究[D].西南交通大学,2018.
XU Jiade. The Application Research of Morphology Filter in Noise Reduction on Bridge Health Monitoring Singal[D]. Southwest Jiaotong University,2018.

PDF(3054 KB)

Accesses

Citation

Detail

段落导航
相关文章

/