广义瞬时速度同步化分步解调变换及其对旋转机械振动信号分析

石娟娟1,花泽晖1,沈长青1,2,江星星1,冯毅雄2,朱忠奎1

振动与冲击 ›› 2021, Vol. 40 ›› Issue (24) : 1-11.

PDF(3005 KB)
PDF(3005 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (24) : 1-11.
论文

广义瞬时速度同步化分步解调变换及其对旋转机械振动信号分析

  • 石娟娟1,花泽晖1,沈长青1,2,江星星1,冯毅雄2,朱忠奎1
作者信息 +

A generalized instantaneous-frequency-estimation-free stepwise demodulation transform and its application in vibration signal analysis of rotating machinery

  • SHI Juanjuan1,HUA Zehui1,SHEN Changqing1,2,JIANG Xingxing1,FENG Yixiong2,ZHU Zhongkui1
Author information +
文章历史 +

摘要

针对当前基于广义解调(generalized demodulation,GD)的方法对旋转机械振动信号处理的不足,提出了广义瞬时速度同步化分步解调变换。首先对信号进行短时截取,引入倾斜角对瞬时频率(instantaneous frequency,IF)进行描述,并采用峭度实现对倾斜角的自适应选取,从而获取该段信号的瞬时频率;而后推导前、后向解调因子对信号进行解调,避免了对瞬时频率进行预估计的同时提升了信号的时频可读性;进一步,针对多分量信号,通过对解调因子进行扩展,获取新的线性变换基函数,使所提方法在无需迭代下可同步增强多分量信号的时频表示;最后,对所提变换的信号重构进行了理论推导,证明了重构的可行性。通过仿真和旋转机械振动信号验证了所提方法在增强时频表示和提高特征提取准确性方面的有效性,与其他时频分析(time-frequency analysis,TFA)方法的对比也进一步体现了所提方法的优越性。

Abstract

The existing generalized demodulation based methods have inherent shortcomings for the vibration signal processing of rotating machinery. This paper, therefore, proposes the generalized instantaneous frequency synchronized stepwise demodulation transform to address such shortcomings. Firstly, the frequency of the truncated signal in a short time window can be seemed as a straight line with an inclination angle. The angle determination strategy is proposed, where the appropriate angle can be selected by the guidance of kurtosis index. Then, the novel forward and backward demodulators used in generalized demodulation (GD) can be calculated to demodulate the truncated signal. Sliding the window, the time-frequency representation (TFR) of the analyzed signal can be obtained with the boosted readability and independence of the instantaneous frequency (IF) pre-extraction. To effectively tackle with multicomponent signals, the original linear transforming kernel is improved to enable the proposed method to simultaneously enhance the multiple frequency components without iterations. The signal reconstruction of the proposed transform is theoretically derived and the results show that the proposed method allows for the reconstruction of the interested frequency components. The simulation and experimental vibration signal analyses verify the effectiveness of the proposed method in enhancing the TFR and increasing the accuracy of the feature extraction. The comparison with other time-frequency analysis (TFA) methods further indicates the advantages of the proposed method.

关键词

故障诊断 / 广义解调 / 时频分析 / 故障特征提取 / 变转速

Key words

Fault diagnosis / Generalized demodulation / Time-frequency analysis / Fault feature extraction / Time-varying speed condition

引用本文

导出引用
石娟娟1,花泽晖1,沈长青1,2,江星星1,冯毅雄2,朱忠奎1. 广义瞬时速度同步化分步解调变换及其对旋转机械振动信号分析[J]. 振动与冲击, 2021, 40(24): 1-11
SHI Juanjuan1,HUA Zehui1,SHEN Changqing1,2,JIANG Xingxing1,FENG Yixiong2,ZHU Zhongkui1. A generalized instantaneous-frequency-estimation-free stepwise demodulation transform and its application in vibration signal analysis of rotating machinery[J]. Journal of Vibration and Shock, 2021, 40(24): 1-11

参考文献

[1] FENG Z, LIANG M, CHU F. Recent advances in time-frequency analysis methods for machinery fault diagnosis: A review with application examples [J]. Mechanical Systems and Signal Processing, 2013, 38(1): 165-205.
[2] LIU T, LI J, CAI X, et al. A time-frequency analysis algorithm for ultrasonic waves generating from a debonding defect by using empirical wavelet transform [J]. Applied Acoustics, 2018, 131: 16-27.
[3] AUGER F, FLANDRIN P, LIN Y-T, et al. Time-frequency reassignment and synchrosqueezing: An overview [J]. IEEE Signal Processing Magazine, 2013, 30(6): 32-41.
[4] DAUBECHIES I, LU J, WU H-T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool [J]. Applied and Computational Harmonic Analysis, 2011, 30(2): 243-261.
[5] YU G, YU M, XU C. Synchroextracting transform [J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8042-8054.
[6] WANG T, CHU F, HAN Q. Fault diagnosis for wind turbine planetary ring gear via a meshing resonance based filtering algorithm [J]. ISA Transactions, 2017, 67: 173-182.
[7] 王天杨, 李建勇, 程卫东. 基于改进的自适应噪声消除和故障特征阶比谱的齿轮噪源干扰下变转速滚动轴承故障诊断 [J]. 振动与冲击, 2014, 33(18): 7-13.
WANG Tianyang, LI Jianyong, CHENG Weidong. Fault diagnosis of rolling bearing under a variable rotational speed and gear vibration noise based on revised ANC algorithm and FCO spectrum [J]. Journal of Vibration and Shock, 2014, 33(18): 7-13.
[8] 秦嗣峰, 冯志鹏, MING L. Vold-Kalman滤波和高阶能量分离在时变工况行星齿轮箱故障诊断中的应用研究 [J]. 振动工程学报, 2015, 28(05): 839-845.
QIN Sifeng, FENG Zhipeng, LIANG Ming. Application of Vold-Kalmen filter and higher order energy separation to fault diagnosis of planetary gearbox under time-varying conditions [J]. Journal of Vibration Engineering, 2015, 28(05): 839-845.
[9] LI C, LIANG M. A generalized synchrosqueezing transform for enhancing signal time–frequency representation [J]. Mechanical Systems and Signal Processing, 2012, 92(9): 2264-2274.
[10] 陈小旺, 冯志鹏, MING L. 基于迭代广义同步压缩变换的时变工况行星齿轮箱故障诊断 [J]. 机械工程学报, 2015, 51(01): 131-137.
CHEN Xiaowang, FENG Zhipeng, LIANG Ming. Planetary gearbox fault diagnosis under time-variant conditions based on iterative generalized synchrosqueezing transform [J]. Chinese Journal of Mechanical Engineering, 2015, 51(01): 131-137.
[11] WANG S, CHEN X, CAI G, et al. Matching Demodulation Transform and SynchroSqueezing in Time-Frequency Analysis [J]. IEEE Transactions on Signal Processing, 2014, 62(1): 69-84.
[12] SHI J, LIANG M, GUAN Y. Bearing fault diagnosis under variable rotational speed via the joint application of windowed fractal dimension transform and generalized demodulation: A method free from prefiltering and resampling [J]. Mechanical Systems and Signal Processing, 2016, 68-69: 15-33.
[13] SHI J, LIANG M, NECSULESCU D-S, et al. Generalized stepwise demodulation transform and synchrosqueezing for time-frequency analysis and bearing fault diagnosis [J]. Journal of Sound and Vibration, 2016, 368: 202-222.
[14] FENG Z, CHEN X, LIANG M. Iterative generalized synchrosqueezing transform for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions [J]. Mechanical Systems and Signal Processing, 2015, 52-53: 360-375.
[15] GUAN Y, LIANG M, NECSULESCU D-S. Velocity Synchronous Linea Chirplet Transform [J]. IEEE Transactions on Industrial Electronics, 2019, 66(8): 6270-6280.
[16] ZHU X, ZHANG Z, LI Z, et al. Multiple squeezes from adaptive chirplet transform [J]. Signal Processing, 2019, 163: 26-40.
[17] YU G, ZHOU Y.General linear chirplet transform [J]. Mechanical Systems and Signal Processing, 2016, 70: 958-973.
[18] PENG Z K, MENG G, CHU F L, et al. Polynomial Chirplet Transform With Application to Instantaneous Frequency Estimation [J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(9): 3222-3229.
[19] PEETERS C, LECLèRE Q, ANTONI J, et al. Review and comparison of tacholess instantaneous speed estimation methods on experimental vibration data [J]. Mechanical Systems and Signal Processing, 2019, 129: 407-436.
[20] 雷亚国, 汤伟, 孔德同, 等. 基于传动机理分析的行星齿轮箱振动信号仿真及其故障诊断 [J]. 机械工程学报, 2014, 50(17): 61-68.
 LEI Yaguo, TANG Wei, KONG Detong, et al. Research advances of fault diagnosis technique for planetary gearboxes [J]. Chinese Journal of Mechanical Engineering, 2014, 50(17): 61-68.

PDF(3005 KB)

Accesses

Citation

Detail

段落导航
相关文章

/