粒子浆液射流冲击下岩石动态损伤及破坏效应

方天成1,刘汉旭1,张园2,程建勋1,任福深1

振动与冲击 ›› 2021, Vol. 40 ›› Issue (24) : 107-118.

PDF(2602 KB)
PDF(2602 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (24) : 107-118.
论文

粒子浆液射流冲击下岩石动态损伤及破坏效应

  • 方天成1,刘汉旭1,张园2,程建勋1,任福深1
作者信息 +

Dynamical response and failure effect of rock with particle slurry jet impact

  • FANG Tiancheng1,LIU Hanxu1,ZHANG Yuan2,CHENG Jianxun1,REN Fushen1
Author information +
文章历史 +

摘要

粒子浆液射流破岩过程涉及大变形、高应变及强载荷,表现为钢粒-浆液-岩石之间非线性动态耦合问题。针对岩石损伤瞬时多变性及观测困难等问题,开展了粒子与浆液射流冲击下岩石的动态损伤机理及破坏效应研究。首先,基于光滑粒子动力学–有限元模拟(smoothed particle hydrodynamics–finite element method ,SPH–FEM)耦合算法描述了粒子-浆液冲击破岩的建模方法,然后结合JH-Ⅱ(Johnson-Holmquist-Ⅱ)模型与Rankine拉伸断裂软化模型建立了岩石损伤本构模型,对粒子浆液射流冲击破岩过程及损伤机理进行了动态模拟。研究结果表明:岩石的损伤破坏主要以纵向扩展为主,具有瞬时性与阶跃性特征,呈现出“从累积损伤到不断破坏”的循环过程;岩石破坏机理以剪切破碎和拉伸裂纹为主。同时,通过实验和数值模拟对比验证了破岩样本的形态,并分析了冲击速度、角度与粒子尺寸对破岩效应的影响规律。研究结果对于粒子浆液冲击钻井破岩理论的发展具有重要意义。

Abstract

Particle slurry jet impact rock-breaking process involves large deformation, high strain and strong loads, which is characterized by complex-nonlinear-dynamic-coupled problem among steel particles, slurry and rock. Aiming at the problems of instantaneity and difficult observation of rock-breaking process, damage mechanism and failure effect of rock with particle slurry jet impact were studied. Based on smoothed particle hydrodynamics–finite element method (SPH–FEM )coupled algorithm, modeling method of particle slurry impact rock was described. Afterwards, the rock damage constitutive model was established by combining Johnson-Holmquist-Ⅱ(JH-Ⅱ) model and Rankine tensile fracture soft model, and dynamical simulation of particle slurry jet impact rock-breaking process was carried out. The results showed that the damage of rock was mainly longitudinal propagation, with instantaneity and step property, which was a cycle process of “from damage accumulation to continuous fracture”; and the rock failure mechanism was mainly characterized by tensile crack, and shear powder. Meanwhile, the morphology of rock-breaking samples was compared and verified by experiment and numerical simulation, and influence laws of impact velocity, angle and particle size on rock-breaking effect were analyzed. This research would be of great significance for the development of particle slurry jet impact rock-breaking theory.

关键词

浆液射流;粒子冲击;光滑粒子动力学&ndash / 有限元模拟(SPH&ndash / FEM);岩石损伤;动态演化;数值模拟;破坏效应

Key words

slurry jet / particle impact / smoothed particle hydrodynamics–finite element method (SPH–FEM) / rock damage / dynamical evolution / simulation / failure effect

引用本文

导出引用
方天成1,刘汉旭1,张园2,程建勋1,任福深1. 粒子浆液射流冲击下岩石动态损伤及破坏效应[J]. 振动与冲击, 2021, 40(24): 107-118
FANG Tiancheng1,LIU Hanxu1,ZHANG Yuan2,CHENG Jianxun1,REN Fushen1. Dynamical response and failure effect of rock with particle slurry jet impact[J]. Journal of Vibration and Shock, 2021, 40(24): 107-118

参考文献

[1] 李  阳,薛兆杰,程  喆,等.中国深层油气勘探开发进展与发展方向[J].中国石油勘探, 2020, 25(1):45-57.
LI Yang, XUE, Zhao-jie, Cheng Zhe, et al. Progress and development direction of deep oil and gas exploration in China[J].China Petroleum Exploration,2020, 25(1):45-57.
[2] 贾承造,庞雄奇,姜福杰.中国油气资源研究现状与发展方向[J].石油科学通报,2016,1(01):2-23.
JIA Cheng-zhao, PANG Xiong-qi, JIANG Fu-jie. Research statues and development direction of oil and gas resources in China[J]. Petroleum Science Bulletin,2016,1(01):2-23.
[3] WANG Feng-chao, SHI Le-le, MA Qing-shan, et al. Principle and mechanical design of a new abrasive slurry jet and its performance testing[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(2):1-10.
[4] CUI Meng, ZHAI Ying-hu, JI Guo-dong. EXPERIMENTAL STUDY OF ROCK BREAKING EFFECT OF STEEL PARTICLES[J]. Journal of Hydrodynamics, 2011, 23(2):241-246.
[5] REN Fu-shen, FANG Tian-cheng, CHENG Xiao-ze. Study on rock damage and failure depth under particle water-jet coupling impact[J]. International Journal of Impact Engineering, 2020, 139:103504.
[6] 林晓东,卢义玉,汤积仁,等.基于SPH-FEM耦合算法的磨料水射流破岩数值模拟[J].振动与冲击,2014,33(18):170-176.
LIN Xiao-dong, LU Yi-yu, TANG Ji-ren, et al. Numerical simulation of rock breaking by abrasive water jet based on SPH-FEM coupling algorithm[J].Journal of Vibration and Shock,2014,33(18):170-176.
[7] 颜廷俊,姜美旭,张  杨,等.基于ANSYS-LSDYNA的围压下粒子冲击破岩规律[J].断块油气田,2012,19(02):240-243.
YAN Ting-jun, JIANG Mei-xu, ZHANG Yang, et al. Rock breaking law of particle impact under confining pressure based on ANSYS-LSDYNA [J].Fault-Block Oil & Gas Field, 2012,19(02):240-243.
[8] 况雨春,朱志镨,蒋海军,等.单粒子冲击破岩实验与数值模拟[J].石油学报,2012,33(06):1059-1063.
KUANG Yu-chun, ZHU Zhi-pu, JIANG Hai-jun, et al. Experiment and numerical simulation of rock breaking by single particle impact[J]. Acta Petrolei Sinica, 2012, 33(06):1059-1063.
[9] 江红祥,杜长龙,刘送永,等.高压水射流冲击破岩损伤场分析[J].中南大学学报(自然科学版),2015,46(01):287-294.
JIANG Hong-xiang, DU Chang-long, LIU Song-yong, et al. Damage field analysis of rock breaking by high pressure water jet impact[J]. Journal of Central South University (Science and Technology),2015,46(01):287-294.
[10] JIANG Hong-xiang, LIU Zeng-hui, GAO Kui-dong. Numerical simulation on rock fragmentation by discontinuous water-jet using coupled SPH/FEA method[J]. Powder Technology, 2017, 312:248-259.
[11] 司  鹄,薛永志.基于SPH算法的脉冲射流破岩应力波效应数值分析[J].振动与冲击,2016,35(05):146-152.
SI Hu, XUE Yong-zhi. Numerical analysis of stress wave effect of pulsed jet rock breaking based on SPH algorithm[J]. Journal of Vibration and Shock, 2016,35(05):146-152.
[12] WANG Fang-xiang, WANG Rui-he, ZHOU Wei-dong, et al. Numerical simulation and experimental verification of the rock damage field under particle water jet impacting[J]. International Journal of Impact Engineering, 2017, 102:169–79.
[13] 赵  健,张贵才,徐依吉,等.基于SPH方法粒子射流破岩数值模拟与实验研究[J].爆炸与冲击,2017,37(03):479-486.
ZHAO Jian, ZHANG Gui-cai, XU Yi-ji, et al. Numerical simulation and experimental study of particle jet rock breaking based on SPH method[J]. Explosion and Shock Waves, 2017,37(03):479-486.
[14] LIU Song-yong , CUI Yu-ming, CHEN Yue-qiang, et al. Numerical research on rock breaking by abrasive water jet-pick under confining pressure[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 120:41-49.
[15] 祝效华,何  灵,刘伟吉,等.粒子射流及其辅助钻齿破岩规律研究[J/OL].西南石油大学学报(自然科学版):2021,1-11.
ZHU Xiao-hua, HE Ling, LIU Wei-ji, et al. Study on rock breaking law of particle jet and its auxiliary drill teeth[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2021,1-11.
[16] 张志春,强洪夫,高巍然.一种光滑粒子流体动力学-有限元法转换算法及其在冲击动力学中的应用[J].西安交通大学学报,2011,45(01):105-110.
ZHANG Zhi-chun, QIANG Hong-fu, GAO Wei-ran. A smooth particle hydrodynamics finite element method conversion algorithm and its application in impact dynamics[J]. Journal of Xi'an Jiaotong University, 2011,45(01):105-110.
[17] 林晓东,卢义玉,汤积仁,等.前混合式磨料水射流磨料粒子加速过程数值模拟[J]. 振动与冲击, 2015, 34(16): 19-24.
LIN Xiao-dong, LU Yi-yu, TANG Ji-ren, et al. Numerical simulation of abrasive particles acceleration process in pre-mixed abrasive water jet. Journal of Vibration and Shock, 2015, 34(16): 19-24.
[18] LIU G R, LIU M B. Smoothed Particle Hydrodynamics: A Meshfree Particle Method[M]. World Scientific Publishing Company, Singap,2003.
[19] REN Fu-shen, FANG Tian-cheng, CHENG Xiao-ze. Theoretical modeling and experimental study of rock-breaking depth in particle jet impact drilling process[J]. Journal of Petroleum Science and Engineering, 2019, 183:106419.
[20] 李世民,李晓军,郭彦朋.基于AUTODYN对弹丸高速碰撞靶体的数值模拟[J].系统仿真学报,2013, 25(04):621-625.
LI Shi-min, LI Xiao-jun, GUO Yan-peng. Numerical simulation of projectile impacting target at high speed based on AUTODYN[J]. Journal of System Simulation, 2013, 25(04):621-625.
[21] 王占江,张德志,张向荣,等.蓝田花岗岩冲击压缩特性的实验研究[J].岩石力学与工程学报,2003(05):797-802.
WANG Zhan-jiang, ZHANG De-zhi, ZHANG Xiang-rong, et al. Experimental study on impact compression characteristics of Lantian granite[J]. Chinese Journal of Rock Mechanics and Engineering,2003(05):797-802.
[22] BANADAKI M D, MOHANTY B. Numerical simulation of stress wave induced fractures in rock[J]. International Journal of Impact Engineering, 2012, 40(2):16–25.
[23] 王志亮,李允忠,黄佑鹏.JH-2模型参数确定及花岗岩重复侵彻数值分析[J].哈尔滨工业大学学报,2020,52(11):127-136.
WANG Zhi-liang, LI Yun-zhong, HUANG You-peng. Parameter determination of JH-2 model and numerical analysis of granite repeated penetration[J].Journal of Harbin Institute of Technology,2020,52(11):127-136.
[24] 王海兵,寿列枫,张建鑫,等.弹丸撞击下花岗岩靶破坏效应实验与数值分析[J].岩石力学与工程学报,2014,33(02):366-375.
WANG Hai-bing, SHOU Lie-feng, ZHANG Jian-xin, et al. Experimental and numerical analysis of failure effect of granite target impacted by projectile[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(02):366-375.
[25] 吕东喜,黄燕华,唐永健,等. 基于SPH算法的磨粒冲击工件表面过程的数值模拟[J]. 2013, 32(7): 169-174.
LV Dong-xi, HUANG Yan-hua, TANG Yong-jian, et al. Simulation research on the process of the abrasive impacting the workpiece surface based on SPH method[J]. Journal of Vibration and Shock, 2013, 32(7): 169-174.
[26] 李允忠. 花岗岩JH-2本构参数标定及其重复载荷下损伤特性数值模拟[D].合肥工业大学,2020.
LI Yun-zhong. Calibration of constitutive parameters of granite jh-2 and numerical simulation of its damage characteristics under repeated loading[D]. Hefei University of Technology, 2020.
[27] 石祥超,陶祖文,孟英峰,等.致密砂岩Johnson-Holmquist损伤本构模型参数求取及验证[J].岩石力学与工程学报,2015,34(S2):3750-3758.
SHI Xiang-chao, TAO Zu-wen, MENG Ying-feng, et al. Calculation and verification for Johnson-Holmquist constitutive model parameters of tight sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 3750-3758.
[28] AI H A, AHRENS T J. Simulation of dynamic response of granite: A numerical approach of shock-induced damage beneath impact craters[J]. International Journal of Impact Engineering, 2006, 33(1/12):1-10.
[29] QIANG Chi-heng, WANG Feng-chao, GUO Chu-wen. Study on impact stress of abrasive slurry jet in cutting stainless steel[J]. International Journal of Advanced Manufacturing Technology, 2019, 100(1-4):297-309.

PDF(2602 KB)

Accesses

Citation

Detail

段落导航
相关文章

/