前缘扰流体对水中流激空腔振荡影响的数值研究

章文文1,2,徐荣武1,2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (24) : 12-21.

PDF(3323 KB)
PDF(3323 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (24) : 12-21.
论文

前缘扰流体对水中流激空腔振荡影响的数值研究

  • 章文文1,2,徐荣武1,2
作者信息 +

Numerical investigation on the influence of leading-edge spoilers on underwater flow-induced cavity oscillations

  • ZHANG Wenwen1,2,XU Rongwu1,2
Author information +
文章历史 +

摘要

为抑制水中流激空腔振荡,提出一种基于“分流”原理的被动控制方法:在空腔前缘的后上方一定高度处放置一倒楔形块,文章称其为前缘分流体(leading-flow division,LFD),前缘分流体可将一部分来流边界层内流体分流进腔内,改善腔内流场环境,进而抑制空腔振荡。采用大涡模拟(large eddy simulation, LES)的数值计算方法,主要从脉动压力、流场速度特性和涡量特性三个方面,计算并分析了前缘分流体对水中流激空腔振荡的控制效果,并与圆柱扰流棒(rod spoiler,RS)和锯齿单元(saw-tooth spoiler,STS)这两种已被证明具有良好控制效果的前缘扰流体进行对比,结果表明,前缘分流体对流激空腔振荡的抑制效果最好,可降低腔底脉动压力线谱达17.4dB;此外,计算结果还表明前缘分流体还具有最小的附加阻力,更适用于实际工程应用。研究工作为降低船舶水下开孔部位的流激空腔噪声奠定了良好的理论基础。

Abstract

In order to suppress flow-induced cavity oscillations in water, a new kind of passive control method based on flow-separation mechanism is proposed, that is mounting an inverted wedge block at a certain height above the cavity leading-edge. This wedge block, which is called Leading-flow Division (LFD) in this paper, can improve the flow field in the cavity and suppress the cavity oscillation by dividing a part of incoming boundary layer fluid into cavity. The large eddy simulation method is used to the numerical investigation of the control effect of LFD on the underwater cavity oscillation from three aspects: pulsation pressure, velocity characteristics and vorticity characteristics of flow field. The control effect of LFD on cavity oscillation is also compared with Rod Spoiler (RS) and Saw-Tooth Spoiler (STS), which were proved having good effects on suppressing cavity oscillation. The results show that LFD have best effect on suppressing cavity oscillation with reducing the line spectrum amplitude of the bottom pulsation pressure to 17.4dB. Besides, the calculation results also show that LFD have the minimum additional resistance which is more suitable for piratical engineering applications. This study lays a good theoretical foundation for reducing the flow-induced cavity noise at the underwater apertures of ships.

关键词

空腔振荡 / 扰流体 / 被动控制 / 线谱噪声 / 数值模拟

Key words

cavity oscillation / spoilers / passive control / line spectrum noise / numerical simulation

引用本文

导出引用
章文文1,2,徐荣武1,2. 前缘扰流体对水中流激空腔振荡影响的数值研究[J]. 振动与冲击, 2021, 40(24): 12-21
ZHANG Wenwen1,2,XU Rongwu1,2. Numerical investigation on the influence of leading-edge spoilers on underwater flow-induced cavity oscillations[J]. Journal of Vibration and Shock, 2021, 40(24): 12-21

参考文献

[1] Norton D. A. Investigation of B47 bomb bay buffet[R]. Boeing Airplane Co. Document No. D12675. May, 1952.
[2] Heller H. H., Dobrzynskif W. M. Sound Radiation from Aircraft Wheel-Well/Landing-Gear Configurations[J]. Journal of Aircraft, 1977, 14(8): 768–774.
[3] Arunajatesan S., Sinha N. Modeling Approach for Reducing Helmholtz Resonance in Submarine Structures[C]// 26th AIAA Aeroacoustics Conference. Monterey, California: AIAA, 2005: 760-771.
[4] Lafon P, Caillaud S, Devos J P,Lambert C. Aeroacoustical coupling in a ducted shallow cavity and fluid/structure effects on a steam line[J]. Journal of Fluids and Structures, 2003, 18: 695-713.
[5] Cattafesta L N, Song Q, Williams D R, et al. Active control of flow-induced cavity oscillations[J]. Progress in Aerospace Sciences, 2008, 44(7): 479-502.
[6] Sarno R. L., Franke M. E. Suppression of flow-induced pressure oscillations in cavities[J]. Journal of Aircraft 1994;31(1):90–96.
[7] Mongeau L, Franchek M A, Kook H. Control of interior pressure fluctuations due to flow over vehicle openings[C]// Proceedings of the1999 noise and vibration conference. Traverse City, Michigan: May 1999. 1999-01-1813.
[8] Micheau P, Chatellier L, Laumonier J, Gervais Y. Active control of a self-sustained pressure fluctuation due to flow over a cavity[C]// 10th AIAA/CEAS Aeroacoustics Conference. Manchester: American Institute of Aeronautics and Astronautics, May 2004. 2004-2851.
[9] Debiasi M, Samimy M. Logic-based active control of subsonic cavity flow resonance[J]. AIAA Journal, 2004, 42(9):1901–1909.
[10] Bolduc M., Elsayed M., Ziada S. Effect of Upstream Edge Geometry on the Trapped Mode Resonance of Ducted Cavities[C]// Proceedings of ASME 2013 Pressure Vessels and Piping Conference. Paris: ASME, 2013. PVP2013-97149
[11] Omer, A., Mohany A., Hassan M. Effect of impingement edge geometry on the acoustic resonance excitation and Strouhal numbers in a ducted shallow cavity[J]. Wind and Structures, 2016, 23(2): 91-107.
[12] 宁方立,宁舜山,等. 可变形状空腔噪声的数值仿真研究[J]. 振动与冲击,2019,37(19):231-238.
Ning F L, Ning S S, et al. Numerical simulation for deformable cavity noise[J]. Journal of Vibration and Shock, 2019,37(19):231-238. (in Chinese)
[13] Saddington A J, Thangamani V, Knowles K. Comparison of passive flow control methods for a cavity in transonic flow[J]. Journal of Aircraft, 2016, 53(5): 1439-1447.
[14] 梁勇,陈迎春,赵鲲,等.锯齿单元对起落架/舱体耦合噪声抑制实验研究[J].航空学报, 2019, 40(x): 122932.
LIANG Yong, CHENG Ying-chun, ZHAO Kun, et al. Experiment investigation on suppression of the aircraft landing gear/bay coupling noise using saw-tooth spoiler[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(x): 122932.
[15] McGrath S. F., Shaw L. L., Active Control of Shallow CavityAcoustic Resonance[C]// 27th AIAA Fluid Dynamics Conference. New Orleans: American Institute of Aeronautics and Astronautics, 1996. AIAA 96-1949.
[16] Flaherty W., Reedy T. M., Elliottet G. S., et al. Investigation of Cavity Flow Using Fast-Response Pressure-Sensitive Paint[J]. AIAA Journal, 2013, 52(11): 1-9.
[17] Sarpotdar S., Panickar P., Raman G. Stability of a Hybrid Mean Velocity Profile and Its Relevance to Cavity Resonance Suppression[J], Physics of Fluids, 2010, 22: 076-101.
[18] Smagorinsky J. General circulation experiments with the primitive equations I: The basic experiment[J]. Monthly Weather View, 1963, 91(3): 99-164
[19] Germano M., Piomelli U., Moin P., et al. A dynamic subgrid-scale eddy viscosity model[J]. Physics of Fluids A, 1991, 3(7): 1760-1765.
[20] Lilly D K. A proposed modification of the Germano subgrid-scale closure method[J]. Phys. Fluids A, 1992, 4(3): 633-635.
[21] Brian R., Smith, T. J. W., Brant H. M., et al. Weapons bay acoustic suppression from rod spoilers [C]// 40th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada: AIAA, 2002.
[22] Arunajatesan S, Sinha N, Menon S. Towards hybrid LES-RANS computations of cavity flowfields[C]// 38th Aerospace Sciences Meeting and Exhibit. Reno, Nevada: AIAA, 2000.
[23] 张翰钦,孙国仓,郑国垠,等. 水下开孔结构流激振荡频率特性分析[J]. 浙江大学学报(工学版),2017, 51(2):350-357.
ZHANG Han-qing, SUN Guo-dong, ZHENG Guo-yin, et al. Analysis of frequency characteristic of underwater flow-induced cavity oscillation[J]. Journal of Zhejiang University (Engineering Science),2017, 51(2):350-357.
[24] 吴亚东,欧阳华 等. 基于被动控制的空腔脉动压力实验研究[J]. 工程热物理学报,2013,34(9): 1640-1644.
WU Ya-dong, OUYANG Hua, et al. Experimental Investigation on the Fluctuating Pressure of Cavity Based on Passive Controls[J]. Journal of Engineering Thermophysics, 2013, 34(9): 1640-1644.

PDF(3323 KB)

535

Accesses

0

Citation

Detail

段落导航
相关文章

/