复杂系统等效激励谱反演方法研究

王帅1,2,王敏庆1,2,廖达雄3,雷雨1,2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (24) : 190-197.

PDF(1953 KB)
PDF(1953 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (24) : 190-197.
论文

复杂系统等效激励谱反演方法研究

  • 王帅1,2,王敏庆1,2,廖达雄3,雷雨1,2
作者信息 +

An equivalent excitation spectrum inversion method for complex systems

  • WANG Shuai1,2,WANG Minqing1,2,LIAO Daxiong3,LEI Yu1,2
Author information +
文章历史 +

摘要

复杂耦合系统受制于结构空间约束通常难以拾取受激部位振动响应,直接采信靠近振源布置的测点难以表征实际受激情况,以此作为振动噪声预报的输入条件需要解决等效激励谱反演的问题。为解决复杂耦合系统的统计能量分析预报难题,本文提出了一种等效激励谱反演的方法,利用偏相干分析改进子系统划分方法,获得结构振动能量传递导纳参数,构建等效激励谱反演的目标函数;进一步,利用遗传算法快速收敛的特性,建立了等效激励谱目标函数寻优计算模型,实现了对等效激励谱有效反演。以双层圆柱壳结构为例验证了所提出的等效激励谱反演方法的有效性和工程适用性。研究表明本文提出的方法可为激励谱反演提供新的技术手段。

Abstract

In the complex coupling system, it is difficult to measure the vibration response of the excitation position subject to the structural spatial constraints, while the response of the measuring points nearby cannot characterize the actual excitation. It is necessary to solve the problem of equivalent excitation spectrum inversion when taking the vibration response of the measuring points as excitation. A method for equivalent excitation spectrum inversion is proposed in this paper, supporting for the statistical energy analysis prediction in the complex coupling system. Based on the partial coherence analysis method, the partitioning method of subsystems was improved, the structural vibration energy transfer admittance parameters were obtained, and the objective function for equivalent excitation spectrum inversion was constructed. Based on the rapid convergence of genetic algorithm, the optimal calculation model of equivalent excitation spectrum inversion objective function was established, the effective inversion of the equivalent excitation spectrum of the complex system was realized. The validity and engineering applicability of the proposed equivalent excitation spectrum inversion method for complex systems were verified by an example of double-layer cylindrical shell structure. The method presented in this paper can provide a new technical means for excitation spectrum inversion.

关键词

激励谱反演 / 复杂系统 / 能量传递导纳 / 偏相干 / 遗传算法

Key words

excitation spectrum inversion / complex system / energy transfer admittance / partial coherence / genetic algorithm

引用本文

导出引用
王帅1,2,王敏庆1,2,廖达雄3,雷雨1,2. 复杂系统等效激励谱反演方法研究[J]. 振动与冲击, 2021, 40(24): 190-197
WANG Shuai1,2,WANG Minqing1,2,LIAO Daxiong3,LEI Yu1,2. An equivalent excitation spectrum inversion method for complex systems[J]. Journal of Vibration and Shock, 2021, 40(24): 190-197

参考文献

[1] WU S Q, LAW S S. Statistical moving load identification including uncertainty[J]. Probabilistic Engineering Mechanics, 2012, 29(7):70-78.
[2] HE Z. C, LIN X. Y, LI E. A Novel method for load bounds identification for uncertain structures in frequency domain[J]. International Journal of Computational Methods, 2017(3):1850051.
[3] LIU J, SUN X, LI K, et al. A probability density function discretization and approximation method for the dynamic load identification of stochastic structures[J]. Journal of Sound and Vibration, 2015:74-94.
[4] NORD T S, ØISETH O, LOURENS E M. Ice force identification on the Norströmsgrund lighthouse[J]. Computers and Structures, 2016, 169: 24-39.
[5] SARVESTAN V, MIRDAMADI H R, GHAYOUR M, et al. Spectral finite element for vibration analysis of cracked viscoelastic Euler–Bernoulli beam subjected to moving load[J]. Acta Mechanica, 2015, 226(12): 4259-4280.
[6] LIU J, SUN X S, HAN X, JIANG C, J, YU D J. Dynamic load identification for stochastic structures based on Gegenbauer polynomial approximation and regularization method[J]. Mechanical Systems and Signal Processing, 2015,56-57.
[7] LIU J, LI K. Sparse identification of time-space coupled distributed dynamic load[J]. Mechanical Systems and Signal Processing, 2021, 148:107177.
[8] Lyon R H. Statistical energy analysis of dynamical systems : theory and applications[M] Massachusetts: MIT Press,1975.
[9] SHENG M P, WANG M Q, SUN J C, et al. Statistical energy analysis for complicated coupled system and its application in engineering[J]. Journal of Sound and Vibration, 2004, 274(3):877-891.
[10] FORSSEN J, TOBER S, CORAKCI A C, et al. Modelling the interior sound field of a railway vehicle using statistical energy analysis[J]. Applied Acoustics, 2012, 73(4):307-311.
[11] MARTINEZ R. Foundations of statistical energy analysis in vibroacoustics[J]. Journal of the Acoustical Society of America, 2016, 140(2):878.
[12] 雷  烨, 盛美萍. 复杂耦合系统SEA求解方法研究[J]. 振动与冲击, 2010, 029(007):159-161,168.
LEI Ye, SHENG Meiping. SEA solving method for a co mplicated coupled system[J]. Journal of Vibration and Shock, 2010, 029(007):159-161,168.
[13] 谢  琼, 谢石林, 张希农. 结构高频载荷识别的统计能量分析法[J]. 航空动力学报, 2012, 27(8):1765-1772.
XIE Qiong, XIE Shilin, ZHANG Xinong. Statistical energy analysis method applited to high frequency load indentification of structures[J]. Journal of Aerospace Power, 2012, 27(8):1765-1772.
[14] 毛伯永, 谢石林, 张希农. 冲击载荷识别的瞬态统计能量分析方法[J]. 振动与冲击, 2013, 32(14):46-51.
MAO Boyong, XIE Shilin, ZHANG Xinong. Identification of impact load based on transient energy analysis method[J]. Journal of Vibration and Shock, 2013, 32(14):46-51.
[15] Kim H C, Cho M. G, Kim J, et al. Coherence technique for noise reduction in rotary compressor[J]. Journal of Mechanical Scienceand Technology, 2012, 26(7):2073-2076.
[16] 李小珍, 刘孝寒, 张迅,等. 基于相干分析的高铁简支箱梁结构噪声源识别方法研究[J]. 工程力学, 2014, 31(001):129-136.
LI Xiaozhen, LIU Xiaohan, Zhang Xun, et al. Research on identification of structure-borne noise source of high-speed railway simply-supported box girder based on coherence analysis [J]. Engineering Mechanics, 2014, 31(001):129-136.
[17] 杨  鑫, 柳晓鸣, 徐婷婷. 基于遗传算法的船舶避浅航线的设计[J]. 上海交通大学学报, 2010, 44(6):774-777.
YANG Xin, LIU Xiaoming, XU Tingting. Anti-grounding Ship Route Planning Based on Genetic Algorithm[J]Journal of Shanghai Jiaotong University, 2010, 44(6):774-777.
[18] 曾志波, 丁恩宝, 唐登海. 基于BP人工神经网络和遗传算法的船舶螺旋桨优化设计[J]. 船舶力学, 2010, 14(1):20-27.
ZENG Zhibo, DING Enbao, TANG Denghai. Ship propeller design optimization based on BP neural network and genetic algorithm[J]Journal of Ship Mechanics, 2010, 14(1):20-27.
[19] 毕传兴, 郭明建, 张永斌,等. 基于声压梯度参考的部分场分解方法及实验研究[J]. 物理学报, 2012, 61(15).
BI Chuanxing, GUO Mingjian, ZHANG Yongbin, et al. An investigation of partial field decomposition using pressure gradient reference[J] Acta Physica Sinica2012, 61(15):300-309.
[20] 孙进才,王冲. 机械噪声控制原理[M].西北工业大学出版社,1993.
SUN Jincai, WANG Chong. Control principle of mechanical noise[M].Northwestern Polytechnical University Press Co.ltd,1993..

PDF(1953 KB)

Accesses

Citation

Detail

段落导航
相关文章

/