囊式空气弹簧统一结构参数预测模型及其影响规律研究

陈俊杰1,2,殷智宏2,3,郭孔辉3,张磊4

振动与冲击 ›› 2021, Vol. 40 ›› Issue (24) : 249-254.

PDF(1355 KB)
PDF(1355 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (24) : 249-254.
论文

囊式空气弹簧统一结构参数预测模型及其影响规律研究

  • 陈俊杰1,2,殷智宏2,3,郭孔辉3,张磊4
作者信息 +

A study on unified prediction models and influence laws of structural parameters for convoluted air spring

  • CHEN Junjie1,2, YIN Zhihong2,3,GUO Konghui3, ZHANG Lei4
Author information +
文章历史 +

摘要

囊式空气弹簧的结构参数是影响其力学特性的重要因素,解决结构参数的辨识难题是计算囊式空气弹簧承载、刚度特性的关键途径。文中采用几何与力学分析方法,以单曲曲囊弧长和盖板有效法兰半径为关键设计参量,建立了基于关键设计参量的囊式空气弹簧统一结构参数预测模型。搭建了结构参数测试装置,实验验证了统一结构参数模型的正确性。揭示了CAS有效容积及其变化率、有效面积与关键设计参量均正相关,但有效面积变化率与曲囊弧长正相关、与有效法兰半径呈负线性相关特性,为设计刚度更低的CAS提供指导;进一步指出有效法兰半径对CAS结构参数的影响比曲囊弧长更为显著,增大有效法兰半径能够明显增大有效面积而显著提升CAS的承载特性,为保证工作气压不变前提下提升CAS承载能力提供了设计指引。研究结果为设计阶段准确计算囊式空气弹簧的结构参数、力学特性奠定基础,也为其结构参数设计与优化提供理论支撑。

Abstract

Structural parameters of convoluted air spring (CAS) are key factors on affecting its mechanical properties. Solving the problem of structural parameters identification is the key way to calculate the load capacity and stiffness characteristics of CAS. Taken the arc length of single convolution and effective flange radius of bead plate as the key design parameters, unified prediction models of structural parameters of CAS based on the key design parameters are established by combining geometrical analysis approach with mechanical analysis method. The test device of structural parameters is built, and the validity of unified prediction models of structural parameters are verified by experiments. It is revealed that the effective volume and its change rate, effective area of CAS are positive correlation with key design parameters, but the change rate of effective area is positive correlation with the arc length of single convolution and negative correlation with effective flange radius, which provides a guide for lower stiffness design of CAS. It is further pointed out that the effective flange radius has more significant influence on structural parameters of CAS than arc length of single convolution. Increasing the effective flange radius can significantly increase the effective area and significantly improve load capacity of CAS, which also provides a design guide for improving the load capacity of CAS under the premise of keeping the working pressure unchanged. The research results lay a foundation for the accurate calculation of structural parameters and mechanical properties of CAS in the design stage, and also provide theoretical support for the design and optimization of structural parameters of CAS.

关键词

囊式空气弹簧 / 结构参数 / 统一预测模型 / 关键设计参量

Key words

Convoluted air spring / Structural parameters / Unifi

引用本文

导出引用
陈俊杰1,2,殷智宏2,3,郭孔辉3,张磊4. 囊式空气弹簧统一结构参数预测模型及其影响规律研究[J]. 振动与冲击, 2021, 40(24): 249-254
CHEN Junjie1,2, YIN Zhihong2,3,GUO Konghui3, ZHANG Lei4. A study on unified prediction models and influence laws of structural parameters for convoluted air spring[J]. Journal of Vibration and Shock, 2021, 40(24): 249-254

参考文献

[1] Qu D, Liu X, Liu G, Baii Y, He T. Analysis of vibration isolationperformance of parallel air spring system for precision equipment transportation[J]. Measurement and Control, 2019, 52(3-4):291-302.
[2] 李仲兴, 管晓星, 江洪. 基于智能体理论的横向互联空气悬架控制研究[J]. 汽车工程, 2019, 41(8):896-904.
LI Zhongxing, GUAN Xiaoxing, JIANG Hong. A research on control of horizontally interconnected air suspension system based on agent theory[J]. Automotive Engineering. 2019, 41(8):896-904.
[3] Quaglia G, Guala A. Evaluation and validation of an air spring analytical model[J]. International Journal of Fluid Power, 2003, 4(2):43-54.
[4] Nieto A J, Morales A L, González A, Chicharro J M, Pintado P. An analytical model of pneumatic suspensions based on an experimental characterization[J]. Journal of Sound and Vibration, 2008, 313(1-2):290-307.
[5] Quaglia G, Sorli M. Air suspension dimensionless analysis and design procedure[J]. Vehicle System Dynamics, 2010, 35(6):443-475.
[6] Hostens I, Deprez K, Ramon H. An improved design of air suspension for seats of mobile agricultural machines[J]. Journal of Sound and Vibration, 2004, 276(1-2):141-156.
[7] 罗贤光. 曲囊式橡胶空气弹簧的一些力学问题[J]. 橡胶工业, 1997, 44(4):228-232.
LUO Xianguang. Mechanical problems of bellow type rubber spring[J]. China Rubber Industry. 1997, 44(4): 228-232.
[8] Xu W, He L, Shuai C G, Ye Z X. Stiffness Calculation and Dynamic Simulation of Air Spring[C].  ASME International Design Engineering Technical Conferences & Computers & Information in Engineering Conference,California, USA, 2005: pp.1395-1399.
[9] 袁春元, 周孔亢, 吴琳琪, 安登峰, 王国林. 汽车空气弹簧橡胶气囊的结构分析方法[J]. 机械工程学报, 2009, 45(09):221-225.
YUAN Chunyuan, ZHOU Kongkang, WU Linqi, AN Dengfeng, WANG Guolin. Structural Analysis Method of Automotive Air-spring Rubber Airbag[J]. Journal of Mechanical Engineering. 2009, 45(09): 221-225.
[10] 顾太平, 何琳, 赵应龙. 囊式空气弹簧平衡性分析[J]. 机械工程学报, 2011, 47(03):69-72.
GU Taiping, HE Lin, ZHAO Yinglong. Equilibrium Performance Analysis for Bellows Type Air Spring[J]. Journal of Mechanical Engineering. 2011, 47(03): 69-72.
[11] 成小霞, 李宝仁, 杨钢, 杜经民. 囊式空气弹簧载荷建模与实验研究[J]. 振动与冲击, 2014, 33(17):80-84.
CHENG Xiaoxia, LI Baoren, YANG Gang, DU Jingmin. Modeling and tests for load of a cystiform air spring[J]. Journal of Vibration and Shock. 2014, 33(17): 80-84.
[12] 徐国敏, 周炜, 何琳, 帅长庚. 新型长方体形囊式空气弹簧垂向动态特性研究[J]. 振动与冲击, 2018, 37(7):247-253.
XU Guomin, ZHOU Wei, HE Lin, SHUAI Changgeng. Vertical dynamic characteristics of cuboid type ais springs[J]. Journal of Vibration and Shock. 2018,37(7): 247-253.
[13] 张广世, 沈钢. 带有连接管路的空气弹簧动力学模型研究[J]. 铁道学报, 2005, 27(4):36-41.
ZHANG Guangshi, SHEN Gang. Study on dynamic air spring model with connecting pipe[J]. Journal of The China Railway Society. 2005, 27(4): 36-41.
[14] 王家胜, 朱思洪. 带附加气室空气弹簧动刚度的线性化模型研究[J]. 振动与冲击, 2009, 28(2):72-76.
WANG Jiasheng, ZHU Sihong. Linearized model for dynamic stiffness of air spring with auxiliary chamber[J]. Journal of Vibration and Shock. 2009,28(2):72-76.
[15] Li X B, Li T. Research on vertical stiffness of belted air springs[J]. Vehicle System Dynamics, 2013, 51(11): 1655-1673.

PDF(1355 KB)

453

Accesses

0

Citation

Detail

段落导航
相关文章

/