超大型电磁振动试验设备水平滑台的建模分析及结构优化

杜环宇1,李鸿光1,孟光1,府晓宏2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (24) : 305-311.

PDF(1573 KB)
PDF(1573 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (24) : 305-311.
论文

超大型电磁振动试验设备水平滑台的建模分析及结构优化

  • 杜环宇1,李鸿光1,孟光1,府晓宏2
作者信息 +

Modelling and optimization of the slip table in large electrodynamic vibration equipment

  • DU Huanyu1, LI Hongguang1, MENG Guang1, FU Xiaohong2
Author information +
文章历史 +

摘要

该研究以东菱振动试验仪器有限公司600 kN推力超大型电磁振动试验设备中使用的水平滑台为对象,利用数值分析和结构优化提高其轴向共振频率,以进一步拓宽超大型振动台的测试频率范围。为了对该结构进行有效分析,分别对滑台各部分进行详细建模,并在接触面上建立了一种简易有效的螺栓模型,用以模拟真实连接形式;通过对各主要结构参数的灵敏度分析,得到影响水平滑台轴向频率的关键参数;最终,通过对关键参数进行优化,提高了结构的轴向共振频率。结果表明,优化后的水平滑台轴向共振频率提高了8.72%,且滑台整体质量降低了0.97%,基本保持设备可用推力不变。

Abstract

In this paper, the horizontal slip table in 600 kN electrodynamic vibration equipment was studied. Numerical analysis and structure optimization were carried out to improve its axial resonance frequency, so as to further broaden the frequency range in vibration test. To analyze the slip table more accurately, the structure was divided into parts, and each of them was modelled in detail. At the contact surface, a novel bolt model was raised to simulate the connection between parts, which is easier to apply in finite element analysis. Through sensitivity analysis of several main structural parameters, the key parameters of the slip table to axial resonance frequency were extracted. Finally, these key parameters were optimized to increase axial resonance frequency. The results show that the optimized axial resonance frequency  is increased by 8.72%, while the mass is reduced by 0.97%, the available thrust can be considered basically unchanged.

关键词

振动与波 / 水平滑台 / 有限元分析 / 模态分析 / 优化设计

Key words

vibration and wave / slip table / finite element analysis / modal analysis / optimization

引用本文

导出引用
杜环宇1,李鸿光1,孟光1,府晓宏2. 超大型电磁振动试验设备水平滑台的建模分析及结构优化[J]. 振动与冲击, 2021, 40(24): 305-311
DU Huanyu1, LI Hongguang1, MENG Guang1, FU Xiaohong2. Modelling and optimization of the slip table in large electrodynamic vibration equipment[J]. Journal of Vibration and Shock, 2021, 40(24): 305-311

参考文献

[1] 宦海祥, 范真. 电动振动设备的发展及展望[J]. 环境技术, 2006(04): 34-37.
HUAN Hai-xiang, FAN Zhen. The development and prospect of electrodynamic vibration equipment [J]. Environmental Testing, 2006(04): 34-37.
[2] 宦海祥. 电动振动台的建模与有限元模态分析研究[D]. 苏州:江苏大学, 2007.
HUAN Hai-xiang. Modeling and FEA Modal Analysis of Electrodynamic Vibrator [D]. Suzhou: Jiangsu University, 2007.
[3]范宣华, 胡绍全. 电动振动台空台建模与仿真技术研究[J]. 系统仿真学报, 2006, 18(02): 313-315.
FAN Xuan-hua, HU Shao-quan. Modeling and simulation research on electordynamic vibration generators [J]. Journal of System Simulation, 2006, 18(02): 313-315.
[4] 范宣华, 胡绍全. 基于有限元法的电动振动台试验仿真研究[J]. 机械强度, 2007, 29(04): 536-539.
FAN Xuan-hua, HU Shao-quan. Simulation research of electordynamic vibration generator tests based on finite element method [J]. Journal of Mechanical Strength, 2007, 29(4): 536-539.
[5] 李红强. 电动振动台动圈的有限元分析与优化设计[D]. 苏州:苏州大学, 2006.
LI Hong-qiang. Finite Element Analysis and Optimum Design for Armature of Electrodynamic Vibration Shaker [D]. Suzhou: Suzhou University, 2006.
[6] 张逸波, 齐晓军, 张丽新. 200kN振动台动圈建模与仿真分析[J]. 航天器环境工程, 2009, 26(03): 244-247.
ZHANG Yi-bo, QI Xiao-jun, ZHANG Lixin. Modelling of armature of 200 kN shaker and its simulation [J]. Spacecraft Environment Engineering, 2009, 26(03): 244-247.
[7] 陈小慧. 电动振动台动力学建模及其扩展台面设计[D]. 成都:西南交通大学, 2008.
CHEN Xiao-hui. Dynamic Model of an Dynamoelectric Vibrator and the Extending Table Design [D]. Chengdu: Southwest Jiaotong University, 2008.
[8] 夏天凉. 电动振动台有限元建模及其附加台面设计[D]. 苏州:苏州大学[D], 2011.
XIA Tian-liang. Finite Element Modeling of Electrodynamic Vibrator and Design for Appending Table [D]. Suzhou: Suzhou University [D], 2011.
[9] 崔志磊, 王金娥, 夏天凉. 电动振动台动圈的结构动态特性分析[J]. 兰州理工大学学报, 2012, 38(05): 29-32.
CUI Zhi-lei, WANG Jin-e, XIA Tian-liang. Analysis of structural dynamic characteristics of armature in electrodynamic shaker [J]. Journal of Lanzhou University of Technology, 2012, 38(05): 29-32.
[10] 孟繁莹. 大型电动振动台动力学分析与数值模拟研究[D].北京:北京工业大学, 2013.
MENG Fan-ying. Study on Large Electric Viration Table Dynamics Analysis and Numerical Simulation [D]. Beijing: Beijing University Of Technology, 2013.
[11] 仝宁可, 杜环宇, 李鸿光, 刘营, 孟光. 600 kN超大推力电磁振动试验台动圈结构的模态分析与优化[J]. 噪声与振动控制, 2019, 39(03): 24-28.
TONG Ning-ke, DU Huan-yu, LI Hong-guang, LIU Ying, MENG Guang. Modal analysis and optimization of the moving coil in a 600 kN electromagnetic vibration shaker [J]. Noise and Vibration Control, 2019, 39(03): 24-28.
[12] 方政, 张伟, 杨晓东. 大型电动振动台动力学建模与分析[C]. 北京力学会:北京力学会第二十四届学术年会会议论文集. 北京力学会, 2018:161-162.
FANG Zheng, ZHANG Wei, YANG Xiao-dong. Dynamic modeling and analysis of large electrodynamic vibration shaker [C]. Beijing Society of Theoretical and Applied Mechanics: Proceedings of the 24th annual conference. Beijing Society of Theoretical and Applied Mechanics, 2018:161-162.
[13] 方政. 大型电动振动台动圈结构动力学建模与分析[D]. 北京:北京工业大学, 2018.
FANG Zheng. Dynamic Modeling and Analysis of Moving Coil in Large Electrodynamic Shaker [D]. Beijing: Beijing University Of Technology, 2018.
[14] 张奎华, 李杨, 郭良栋. 大推力电动振动台动圈骨架热功率计算[J]. 中国科技论文, 2020, 15(07): 761-766.
ZHANG Kui-hua, LI Yang, GUO Liang-dong. Thermal power calculation of high-thrust electordynamic vibration generator’s moving coil skeleton [J]. China Sciencepaper, 2020, 15(07): 761-766.
[15] 杨国庆, 王飞, 洪军, 朱林波. 螺栓被连接件刚度理论的计算方法[J]. 西安交通大学学报, 2012, 46(07): 50-56.
YANG Guo-qing, WANG Fei, HONG Jun, ZHU Linbo. Theoretical analysis for bolted member stiffness [J]. Journal of Xi’an Jiaotong University, 2012, 46(07): 50-56.
[16] Yongsheng Zhao, Jingjing Xu, Ligang Cai, Weimin Shi, Zhifeng Liu. Stiffness and damping model of bolted joint based on the modified three-dimensional fractal topography [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2017, 231(2): 279-293.
[17] 黄开放, 金建新. 基于虚拟材料方法的螺栓预紧力模拟的研究[J]. 机械设计与制造, 2012(08): 148-150.
HUANG Kai-fang, JIN Jian-xin. Research on bolt preload simulation based on virtual materiaI method [J]. Machinery Design & Manufacture, 2012(08): 148-150.
[18] 田红亮. 机械结构固定结合部虚拟材料的动力学建模[D].武汉:华中科技大学, 2011.
TIAN Hong-liang. Dynamic Modeling on Fixed Joint Interface Virtual Material in Mechanincal Structure [D]. Wuhan: Huazhong University of Science and Technology, 2011.
[19] Hui Ye, Yumei Huang, Pengyang Li, Yan Li, Lijing Bai. Virtual material parameter acquisition based on the basic characteristics of the bolt joint interfaces [J]. Tribology International, 2016(95): 109-117.
[20] Jingping Liao, Jianfu Zhang, Pingfa Feng, Dingwen Yu, Zhijun Wu. Interface contact pressure-based virtual gradient material model for the dynamic analysis of the bolted joint in machine tools [J]. Journal of Mechanical Science and Technology, 2016, 30(10): 4511-4521.
[21] Huifang Xiao, Yunyun Sun. An improved virtual material based acoustic model for contact stiffness measurement of rough interface using ultrasound technique [J]. International Journal of Solids and Structures, 2018(155): 240-247.
[22] Sayed A. Nassar, Antoine Abboud. An Improved Stiffness Model for Bolted Joints[J]. Journal of Mechanical Design, 2009, 131(12): 121001(1-11).

PDF(1573 KB)

Accesses

Citation

Detail

段落导航
相关文章

/