海域地震动长周期特性及其强度指标研究

谭景阳,胡进军,谢礼立

振动与冲击 ›› 2021, Vol. 40 ›› Issue (3) : 1-9.

PDF(4004 KB)
PDF(4004 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (3) : 1-9.
论文

海域地震动长周期特性及其强度指标研究

  • 谭景阳,胡进军,谢礼立
作者信息 +

Long-period characteristics of offshore ground motion and its and intensity index

  • TAN Jingyang, HU Jinjun, XIE Lili
Author information +
文章历史 +

摘要

为了分析海域地震动的长周期特性,选取893条三分量海域地震动记录,识别出其中长周期特性明显的水平和竖向海域地震动,比较了海域长周期地震动的动力放大系数谱和抗震设计规范谱的差异,研究了海域地震动强度指标PGA、PGV、PGD与不同强度折减系数下的弹塑性单自由度体系的最大变形需求间的相关性。分析结果表明,由浅源远场强震(震源深度小于45 km,震中距大于120 km,且矩震级大于6.2)产生的海域地震动的长周期特性十分突出,其动力放大系数谱在长周期段(2-10 s)明显超过了抗震设计规范谱的取值,且竖向地震动的长周期特性比水平向地震动更显著;PGD和单自由度体系的最大变形需求的相关性在长周期段最好,因此建议选用PGD作为海域远场长周期地震动的抗震分析强度指标。

Abstract

In order to analyze long-period characteristics of offshore ground motion, 893 3-component offshore ground motion records were selected, and horizontal and vertical offshore ground motions with obvious long-period characteristics were identified. The dynamic amplification factor spectrum of long-period offshore ground motion was compared with the aseismic design code spectrum, and correlations among offshore ground motion intensity indexes PGA, PGV, PGD and the maximum deformation demands of elastoplastic single-DOF systems with various strength reduction factors were studied. The analysis results showed that long-period characteristics of offshore ground motion caused by shallow source far-field strong earthquakes with focal depth less than 45 km, epicentral distance larger than 120 km and moment magnitude larger than 6.2 is very prominent, their dynamic amplification factor spectra in the long period range of 2-10 s are obviously exceed values of the aseismic design code spectrum, and long-period characteristics of vertical ground motion are more significant than those of horizontal one; the correlation between PGD and the maximum deformation demands of single-DOF systems is best in the long period range, so PGD is suggested to be the aseismic analysis intensity index for offshore far-filed long-period ground motion.

关键词

/ font-size: 9pt / mso-bidi-font-size: 10.5pt / mso-font-kerning: 0pt / mso-bidi-font-weight: bold / mso-ascii-font-family: 'Times New Roman' / mso-hansi-font-family: 'Times New Roman'">海域地震动;长周期特性;强度指标;相关性分析;远场强震

Key words

offshore ground motion / long-period characteristics / intensity index / correlation analysis / far-field strong earthquake

引用本文

导出引用
谭景阳,胡进军,谢礼立. 海域地震动长周期特性及其强度指标研究[J]. 振动与冲击, 2021, 40(3): 1-9
TAN Jingyang, HU Jinjun, XIE Lili. Long-period characteristics of offshore ground motion and its and intensity index[J]. Journal of Vibration and Shock, 2021, 40(3): 1-9

参考文献

[1] 李小军. 海域工程场地地震安全性评价的特殊问题[J]. 震害防御技术, 2006, 1(2): 97-104.
LI Xiaojun. Special problems in seismic safety evaluation of   sea area engineering site [J]. Technology for Earthquake Disaster Prevention, 2006, 1(2): 97-104.
[2] Diao H, HU J, XIE L. Effect of seawater on incident plane P and SV waves at ocean bottom and engineering characteristics of offshore ground motion records off the coast of southern California, USA[J]. Earthquake Engineering and Engineering Vibration, 2014, 13(2): 181-194.
[3] 谢礼立, 周雍年, 胡成祥, 等. 地震动反应谱的长周期特性[J]. 地震工程与工程振动, 1990, 10(1): 1-20.
 XIE Lili, ZHOU Yongnian, HU Chengxiang, et al. Long period characteristics of ground motion response spectra [J]. Earthquake Engineering and Engineering Vibration, 1990, 10(1): 1-20.
[4] 陈苏, 周越, 李小军, 等. 近海域地震动的时频特征与工程特性[J]. 振动与冲击, 2018, 37(16): 227-233.
 CHEN Su, ZHOU Yue, LI Xiaojun, et al. Time-frequency and engineering characteristics on offshore ground motion [J]. Journal of Vibration and Shock, 2018, 37(16):227-233.
[5] Kazuki Koketsu, Hiroe Miyake. A seismological overview of long-period ground motion [J]. Journal of Seismology, 2008, 12(2): 133-143.
[6] 徐龙军, 胡进军, 谢礼立. 特殊长周期地震动的参数特征研究[J]. 地震工程与工程振动, 2006, 28(6): 20-28.
 XU Longjun, HU Jinjun, XIE Lili. On characteristics of ground motion parameters for special long-period ground motions [J]. Earthquake Engineering and Engineering Dynamics, 2006, 28(6): 20-28.
[7] 李雪红, 王文科, 吴迪, 等. 长周期地震动的特性分析及界定方法研究[J]. 振动工程学报, 2014, 27(5): 685-692.
 LI Xuehong, WANG Wenke, WU Di, et al. The bounded method and characteristics analysis for long-period ground motions [J]. Journal of Vibration Engineering, 2014, 27(5): 685-692.
[8] 李英民, 赵晨晓, 谭潜. 基于HHT地震动分量分离的长周期地震动界定方法[J]. 振动与冲击, 2018, 37(7): 164-172.
 LI Yingmin, ZHAO Chenxiao, TAN Qian. Classification method for long period ground motions based on component decomposition with HHT [J]. Journal of Vibration and Shock, 2018, 37(7): 164-172.
[9] Liao WI, Loh C H, Wan S. Earthquake response of RC moment frames subjected to near-fault ground motions [J]. The Structural Design of Tall Buildings, 2001, 10(2): 219-229.
[10] Boore D M, Smith C E. Analysis of earthquake recordings obtained from the Seafloor Earthquake Measurement System (SEMS) instruments deployed off the coast of southern California [J]. Bulletin of the Seismological Society of America, 1999, 89(1): 260-274.
[11] Baokui Chen, Dongsheng Wang, Hongnan Li, et al. Characteristics of earthquake ground motion on the seafloor [J]. Journal of Earthquake Engineering, 2015, 19(6): 874-904.
[12] 胡进军, 刁红旗, 谢礼立. 海底强震动观测及其特征的研究进展[J]. 地震工程与工程振动, 2013, 33(6): 1-8.
 HU Jinjun, DIAO Hongqi, XIE Lili. Review of observation and characteristics of seafloor strong motion [J]. Earthquake Engineering and Engineering Vibration, 2013, 33(6): 1-8.
[13] Zhang Q, Zheng X Y. Offshore earthquake ground motions: Distinct features and influence on the seismic design of marine structures [J]. Marine Structures, 2019, 65: 291-307.
[14] Takao E, Yukio F, Eisuke F, et al. A real-time observation network of ocean-bottom-seismometers deployed at the Sagami trough subduction zone, central Japan [J]. Marine Geophysical Researches, 1998, 20: 73-94.
[15] Aoi S, Kunugi T, Fujiwara H. Strong-motion seismograph network operated by NIED: K-net and Kik-net [J]. Journal of Japan Association for Earthquake Engineering, 2004, 4(3): 65-74.
[16] Boore D M, Stephens C D, Joyner W B. Comments on baseline correction of digital strong-motion data: examples from the 1999 Hector Mine, California, Earthquake [J]. Bulletin of the Seismological Society of America, 2002,92(4): 1543-1560.
[17] Boore D M, Bommer J J. Processing of strong-motion accelerograms: Needs, options and consequences [J]. Soil Dynamics and Earthquake Engineering, 2005, 25:93-115.
[18] Zhao J X, Jian Z, Akihiro A, et al. Attenuation relations of strong ground motion in Japan using site classification based on predominant period [J]. Bulletin of the Seismological Society of America, 2006,96(3): 898-913.
[19] Crouse C B, Quilter J. Seismic hazard analysis and development of design spectra for Maul A Platform [C]. Proceedings of Pacific Conference on Earthquake Engineering, New Zealand, 1991, 3: 137-148.
[20] Cheng Y, Bai G. Basic characteristic parameters and influencing factors of long-period ground motion records [J]. Journal of Vibroengineering, 2017, 19(7): 5191-5207.
[21] Konno K, Ohmachi T. Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor [J]. Bulletin of the Seismological Society of America, 1998, 88(1): 228-241.
[22] 胡聿贤. 地震工程学[M]. 北京:地震出版社, 2006.
HU Yuxian. Earthquake Engineering [M]. Seismological Press, 2006.
[23] Travasarou T, Bray J D, Abrahamson N A. Empirical attenuation relationship for Arias intensity [J]. Earthquake Engineering and Structural Dynamics, 2003, 32(7): 1133-1155.
[24] Casolo S. Significant ground motion parameters for evaluation of the seismic performance of slender masonry towers [J]. Journal of Earthquake Engineering, 2001, 5(2): 187-204.

PDF(4004 KB)

Accesses

Citation

Detail

段落导航
相关文章

/