针对目前最常用的32m跨径高铁简支梁桥,同时考虑对行车安全不利的路桥过渡段和墩高改变处,对高铁桥梁的行车安全性能进行了评价;分析了铅芯橡胶支座、摩擦摆支座等常规减隔震方案在高铁桥梁中运用的可行性。分析结果表明,采用盆式橡胶支座的高铁桥梁在地震作用下轨道变形和轨道横向加速度较大,无法满足高速运行的列车的行车安全性要求;采取常规减隔震措施之后,尽管地震响应有所降低,但在路桥过渡段依然无法满足列车的行车安全性要求。鉴于此,研发了抗冲击多向耗能阻尼器,与盆式支座相结合,提出了可以满足列车行车安全性的高铁桥梁横桥向减隔震体系。该体系可在地震作用时盆式支座剪断瞬间承受较大的冲击力,保证体系转换过程中桥梁结构的刚度不发生突变,控制轨道变形不超过允许的限值,保证列车的行车安全性。
Abstract
Here, aiming at the most widely used 32 m-span high-speed railway simply supported girder bridge, considering transition segments of road and bridge and change places of pier height harmful to train running safety, the safety performance of high-speed railway bridge was evaluated and the feasibility of applying conventional seismic isolation schemes, such as, lead core rubber bearings and friction pendulum bearings in high-speed railway bridge was analyzed. The results showed that track deformation and track lateral acceleration of high-speed railway bridge with pot type rubber bearings are larger, they can’t meet running safety requirements of high-speed trains; after taking conventional seismic isolation measures, the bridge seismic response is reduced, but running safety requirements of train can’t be satisfied at transition segments of road and bridge. Therefore, the anti-impact multi-directional energy-dissipating damper was developed, using it combined with pot type bearing, a transverse seismic isolation system for high-speed railway bridge was proposed to meet requirements of train running safety. It was shown that under action of earthquake, the proposed system can bear a larger impact force at the moment of pot type bearing being cut off, ensure the stiffness of the bridge structure not having mutation in conversion process of the system, control track deformation not exceeding the allowable limit value, and ensure the running safety of trains.
关键词
高铁桥梁 /
行车安全 /
轨道变形 /
轨道横向加速度 /
抗冲击多向耗能阻尼器 /
减隔震体系
{{custom_keyword}} /
Key words
high-speed railway bridge /
traffic safety /
track deformation /
lateral acceleration of track /
anti-impact multi-direction energy-dissipating damper /
seismic isolation system
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 范立础.桥梁抗震[M]. 上海: 同济大学出版社, 1997.
FAN Li-chu, Seismic design of bridges[M], Shanghai: TongJi University Press,1997.
[2] 黄尚.高速铁路桥梁基于性能的抗震设计方法研究[D].长沙: 中南大学, 2011.
Huang Shang . Research on performance-based seismic design method for high-speed railway Bridges[D]. Changsha: Central South University, 2011.
[3] Nagase K, Kondo K, Nomura T. Train damaged by the quake in Kobe[J]. The Japan Society of Mechanical Engineers, 1997, 63(606): 620-627.
[4] Nishimura K, Terumichi Y, Morimura T. Development of vehicle dynamics simulation for safety analyses of rail vehicles on excited tracks[J]. Journal of Computational and Nonlinear Dynamics, 2009, 48(3): 129-135.
[5] 茅建校, 尹万云, 王浩, 等.新型多功能桥梁滑移-减隔震支座性能试验[J].建筑科学与工程学报, 2014, 31(4): 80-86.
MIAO Jian-xiao, YIN Wan-yun, WANG Hao, etal, Experiment on Mechanical Properties of New Type of Multifunctional Sliding-isolation Bridge Bearing[J]. Journal of Architecture and Civil Engineering, 2014, 31(4): 80-86.
[6] 余小华,窦胜谭.速度锁定器在桥梁抗震中的有限元模拟[J].铁道标准设计, 2015, 59(2): 56-59.
Yu Xiao-hua, Dou Sheng-tan, Finite Element Simulation of Shock Transmission Unit in Bridge Seismic System[J]. Railway Standard Design, 2015, 59(2): 56-59.
[7] Wei Xiong, Shan-jun Zhang, Li-zhong Jiang, et al. Introduction of the convex friction system (CFS) for seismic isolation[J]. Structural Control & Health Monitoring, 2016, 24(1):1861-1868.
[8] 李正英,蒋林均,李正良. 曲线连续梁桥不同减隔震方案对比分析[J]. 振动与冲击,2016,35(10):157-161.
LI Zheng-ying, JIANG Lin-jun, LI Zheng-liang. Comparison and analysis of different seismic isolation schemes for Curved Continuous Girder Bridges[J]. Journal of Vibration and Shock,2016,35(10):157-161.
[9] 雷虎军, 李小珍, 刘德军.地震作用下高墩刚构桥行车安全性分析[J].地震工程与工程振动, 2014, 34(5): 87-93.
LEI Hujun, LI Xiaozhen, LIU Dejun, Train running safety analysis of high-pier rigid frame bridge under earthquake action[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(5): 87-93.
[10] 吴国斌, 谭平, 王冰, 等.高速铁路桥梁的隔震研究[J].华南地震, 2016, 36(2): 32-40.
WU Guobin , TAN Ping, WANG Bing, et al. Study on Isolated High-Speed Railway Girder Bridge[J]. South China Journal of Seismology, 2016, 36(2): 32-40.
[11] 张楠,夏禾.地震对多跨简支梁桥上列车运行安全的影响[J].世界地震工程, 2001, 17(4): 93-99.
ZHANGNan, XIAHe. Influence of earthquakes on running safety of vehicles on multi-span girders bridge. WORLD INFORMATION ON EARTHQUAKE ENGINEERING, 2001, 17(4): 93-99.
[12] 刘智.高速铁路车桥耦合体系地震响应分析及报警阀值研究[D].哈尔滨:中国地震局工程力学研究所,2015.
LIU Zhi. Study on Seismic Response of Train-Bridge Coupling System and Earthquake Alarm Threshold[D]. Harbin: Institute of Engineering Mechanics,China Earthquake Administration,2015.
[13] 田卿.基于梁轨共同作用的高速铁路桥梁地震动力响应研究 [D]. 长沙: 中南大学, 2012.
TIAN Qing. High-speed Railway Bridge Seismic Dynamic Response Research Based on Track-bridge Interaction[D]. Changsha: Central South University, 2012.
[14] 中华人民共和国铁道部,(GB 50111-2006).铁路工程抗震设计规范[S].北京中国计划出版社, 2006.
Ministry of Railways of the People's Republic of China , (GB 50111-2006). Code for seismic design of railway enigeering[S]. Ching Planning Press, 2006.
[15] 中华人民共和国住房和城乡建设部, (GB50909-2014).城市轨道交通结构抗震设计规范[S].北京中国计划出版社, 2014.
Ministry of Housing and Urban-Rural Development of the People's Republic of China, (GB50909-2014).Code for seismic design of Urban Rail Transit structures[S]. Ching Planning Press, 2014.
[16] 刘林, 阎贵平, 辛学忠.京沪高速铁路地震预警系统的方案及关键参数研究[J].中国安全科学学报, 2008, 12(4): 76-79.
Liu Lin, Yan Guiping, Xin Xuezhong. Study on Schemes and Key Parameters of Seismic Alarm System for Beijing -Shanghai Express Railway[J]. China Safety Science Journal, 2008, 12(4): 76-79.
[17] 周良成,徐秀丽,周绪旭,等. 兼具抗冲击与多向耗能功能的阻尼器力学性能研究[J] .防灾减灾工程学报, 2018,38(2):312-317.
ZHOU Liangcheng, XU Xiuli, ZHOU Xuxu, et al. Mechanical Properties Research of a Damper with the Function of Impact Resistant and Multidirectional Energy Dissipation[J]. Journal of Disaster Prevention and Mitigation Engineering. 2018,38(2):312-317.
[18] 李雪红,李文琳,徐秀丽,等. 新型抗冲击型黏滞阻尼器的力学性能研究[J].土木工程学报,2018,51(S1):85-91.
Li Xuehong, Li Wenlin ,Xu Xiuli, et al. Study on mechanical property the of new type viscous dampers with shock resistance[J]. CHINA CIVIL ENGINEERING JOURNAL , 2018,51(S1):85-91.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}