本文基于船舶主机等主要激励,计算得到了船体梁的反共振频率,并提出了一种基于反共振频率配置的船体振动设计方法。该方法可将激励频率设置为反共振频率,通过对结构刚度修改或质量修改,使得船体的上层建筑或桅杆等重要部位在该反共振频率下振动响应为零,并可明显减小该频率下船体的振动响应。数值算例验证了所提出的反共振频率配置设计方法的有效性。
Abstract
Here, based on main excitation of ship’s main engine, anti-resonance frequencies of hull girder were calculated, and a hull vibration design method based on anti-resonance frequencies allocation was proposed. With this method, the excitation frequency could be set as the anti-resonance frequency. By modifying structural stiffness or mass, vibration responses of important positions of a hull, such as, superstructure or mast etc. were zero under the anti- resonance frequency, and the vibration response of the hull under this frequency could be obviously reduced. The effectiveness of the proposed method was verified with numerical examples.
关键词
船体梁 /
反共振频率 /
船体振动 /
结构修改
{{custom_keyword}} /
Key words
hull girder /
anti-resonance frequency /
hull vibration /
structural modification
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 胡海岩. 论线性系统的反共振问题[J]. 动力学与控制学报. 2018, 16(05): 385-390.
HU Haiyan. On anti-resonance problem of a linear system [J]. Journal of Dynamics and Control, 2018, 16(05): 385-390.
[2] Wang B P, Kirk J P. Matrix formulation for minimum response of undamped structures[J]. AIAA Journal. 2006, 44(12): 3072-3079.
[3] Mottershead J E. Structural modification for the assignment of zeros using measured receptances[J]. Journal of Applied Mechanics-Transactions of the ASME. 2001, 68(5): 791-798.
[4] 李五洲. 反共振隔振装置隔振原理分析[J]. 直升机技术. 2004(01): 6-8.
LI Wuzhou. The isolation principle analysis on anti-resonance isolator [J]. Helicopter Technique, 2004(01): 6-8.
[5] 刘劲涛,刘杰,李小号,等. 反共振时上质体振幅最小的反共振振动机动力学分析与仿真[J]. 振动与冲击. 2009, 28(09): 109-111.
LIU jingtao, LIU jie, LI xiaohao, et al. Dynamic analysis and simulation for anti-resonant vibration machines with smallest upper body's amplitude when anti-resonant vibration happens [J]. Journal of Vibration and Shock, 2009, 28(09): 109-111.
[6] 储炜,赵耀,张赣波,等. 共振转换器的动力反共振隔振理论与应用[J]. 船舶力学. 2016, 20(Z1): 222-230.
CHU Wei, ZHAO Yao, ZHANG Gaobo, et,al. Dynamic anti-resonance vibration isolation theory of resonance changer and application[J]. Journal of Ship Mechanics. 2016, 20(Z1): 222-230.
[7] 李园园,陈国平,王轲. 直升机旋翼/机身动力反共振隔振器的优化设计[J]. 振动与冲击. 2016, 35(15): 115-121.
LI Yuanyuan, CHEN Guoping, WANG Ke. Optimization design for dynamic anti-resonance isolators of helicopters' rotor/fuselage [J]. Journal of Vibration and Shock, 2016, 35(15): 115-121.
[8] 张闻,张方,姜金辉. 主动式动力反共振隔振系统控制策略研究与仿真[J]. 国外电子测量技术. 2015, 34(10): 17-21.
ZHANG Wen, ZHANG Fang, JIANG Jinhui. Control algorithm design and simulation for active DAVI system [J].
Foreign Electronic Measurement Technology, 2015, 34(10): 17-21.
[9] 范德礼,吴文敏,董兴建,等. 可调频液压式动力反共振隔振器动力学分析及优化设计[J]. 振动与冲击. 2019, 38(14): 33-36.
FAN Deli, WU Wenmin, DONG Xingjian, et al. Dyanmic analysis of a frequency tunable hydraulic anti-resonant vibration isolator and its optimization [J]. Journal of Vibration and Shock, 2019, 38(14): 33-36.
[10] 马广宗,卢长立,朱慕时. 15000吨干货船的减振设计[J]. 振动与冲击. 1983(03): 55-62.
MA Guangzong, LU Changli, ZHU Mushi. Vibration reducing design of a 15000-ton general cargo ship [J]. Journal of Vibration and Shock, 1983(03): 55-62.
[11] 李维嘉,曹青松. 船舶振动主动控制的研究进展与评述[J]. 中国造船. 2007(02): 68-79.
LI Weijia, CAO Qingsong. Advances and Review on the Research of the Active Control of Ship Vibration [J]. Shipbuilding of China, 2007(02): 68-79.
[12] Zheng H, Liu G R, Tao J S, et al. FEM/BEM analysis of diesel piston-slap induced ship hull vibration and underwater noise[J]. APPLIED ACOUSTICS. 2001, 62(4): 341-358.
[13] Yucel A, Arpaci A. Free and forced vibration analyses of ship structures using the finite element method[J]. JOURNAL OF MARINE SCIENCE AND TECHNOLOGY. 2013, 18(3): 324-338.
[14] Yin Y M, Cui H Y, Hong M, et al. Prediction of the vertical vibration of ship hull based on grey relational analysis and SVM method[J]. JOURNAL OF MARINE SCIENCE AND TECHNOLOGY. 2015, 20(3): 467-474.
[15] Thekinen J D, Datta N. Rayleigh-Ritz method-based analysis of dry coupled horizontal-torsional-warping vibration of rectelliptic open-section containership bare-hulls[J]. APPLIED OCEAN RESEARCH. 2019, 86: 73-86.
[16] 赵亮,殷平化. 基于有限元模型分析的船体振动响应预报研究[J]. 科技视界. 2014(19): 188-189.
ZHAO Liang YIN Pinghua. Study on the Response Prediction of Hull Vibration based on Finite Element Analysis [J]. Science & Technology Vision. 2014(19): 188-189.
[17] 陈占阳,任慧龙,李辉. 水弹性理论与分段模型试验在船体振动响应分析中的应用[J]. 振动与冲击. 2012, 31(24): 119-124.
CHEN Zhan-yang, REN Hui-long, LI Hui. Application of hydroelasticity theory and segmented model test in hull vibration response analysis [J]. 2012, 31(24): 119-124.
[18] He J. Modal analysis[M]. Oxford Boston: Oxford; Boston : Butterworth-Heinemann, 2001.
[19] 金咸定. 船体振动学[M]. 上海: 上海 : 上海交通大学出版社, 2011.
JIN Xianding, XIA Lijuan. Hull vibration[M]. Shanghai, Shanghai JiaoTong University Press,2011.
[20] 中国船级社. 船上振动控制指南[S]. 北京: 人民交通出版社, 2000
China Classification Society. Ship Vibration Control Guide [S]. Beijing, China Communications Press, 2000
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}