基于随机子空间法的海洋平台模态特征实时提取方法研究

黄焱1,陈涛1,朱本瑞2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (3) : 147-155.

PDF(2267 KB)
PDF(2267 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (3) : 147-155.
论文

基于随机子空间法的海洋平台模态特征实时提取方法研究

  • 黄焱1,陈涛1,朱本瑞2
作者信息 +

Modal features real-time extraction of offshore platform based on stochastic subspace method

  • HUANG Yan1, CHEN Tao1, ZHU Benrui2
Author information +
文章历史 +

摘要

海洋平台结构模态特征实时提取是其结构健康监测的一项重要手段。针对传统随机子空间算法在有限测点下无法反映结构整体特征的问题,提出了一种改进的协方差驱动随机子空间模态实时提取方法。该方法基于一种新的Hankel元素重构方式,构建了结构实际空间信息与算法的相关性,并有效降低了计算矩阵的维度,从而显著提高了平台模态识别的准确度和计算效率。在此基础上,进一步建立了基于信号累积特征的虚假模态辨识方法与剔除准则,解决了传统随机子空间方法在计算大型复杂结构时存在虚假模态过多的问题。以渤海某海洋平台为例,采用所建立的方法对该平台响应信号进行计算,并与传统随机子空间方法进行对比分析,验证了本文所提方法的优良适用性和鲁棒性。

Abstract

Real-time extraction of structural modal features is an important means of structural health monitoring. Aiming at the problem of the traditional stochastic subspace algorithm being not able to reflect overall characteristics of a structure under finite measuring points, an improved covariance-driven stochastic subspace modal features real-time extraction method was proposed. Firstly, based on a new Hankel element reconstruction form, the correlation between the actual spatial information of a structure and the algorithm was constructed, and the dimension of the calculation matrix was effectively reduced to significantly improve the accuracy and efficiency of the platform modal identification. Then, the identification method and elimination criteria of false modes based on signal accumulation characteristics were further established to solve the problem of excessive false modes in the calculation of large-scale complex structure with the traditional stochastic subspace method. Finally, taking an offshore platform in Bohai Sea as an example, the response signals of the platform were calculated using the proposed method, and the results were compared with those obtained using the traditional stochastic subspace method to verify the excellent applicability and robustness of the proposed method.

关键词

随机子空间方法 / 模态参数提取 / Hankel矩阵 / 海洋平台

Key words

stochastic subspace method / modal parameter extraction / Hankel matrix / offshore platform

引用本文

导出引用
黄焱1,陈涛1,朱本瑞2. 基于随机子空间法的海洋平台模态特征实时提取方法研究[J]. 振动与冲击, 2021, 40(3): 147-155
HUANG Yan1, CHEN Tao1, ZHU Benrui2. Modal features real-time extraction of offshore platform based on stochastic subspace method[J]. Journal of Vibration and Shock, 2021, 40(3): 147-155

参考文献

[1]  Peeters B, De Roeck G. Reference-based stochastic subspace identification for output-only modal analysis [J]. Mechanical Systems and Signal Processing, 1999, 13(6): 855~878. [2]  Van Overschee P, De Moor B. Subspace identification for linear systems: theory-implementation-applications [M]. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1996.
[3]  傅志方. 振动模态分析与参数识别[M]. 北京:机械工业出版社, 1990.
Fu Zhi-fang. Vibration modal analysis and parameter identification [M]. Beijing: China Machine Press, 1990.
[4]  辛峻峰,王树青,刘福顺. 数据驱动与协方差驱动随机子空间法差异化分析[J]. 振动与冲击,2013, 32(9): 1-5.
XIN Jun-feng, WANG Shu-qing, LIU Fu-shun. Performance comparison for data-driven and covariance-driven stochastic subspace identification method [J]. Journal of vibration and shock, 2013, 32(9): 1-5.
[5] Boonyapinyo V, Janesupasaeree T. Data-driven stochastic subspace identification of flutter derivatives of bridge decks [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(12): 784-799.
[6]  李团结,刘伟萌,唐雅琼,高利强. 一种改进的识别结构模态参数的随机子空间法[J].西安电子科技大学学报,2017, 44(06): 26-30+58.
LI Tuan-jie, LIU Wei-meng, TANG Ya-qiong. An improved stochastic subspace identification for identifying structural modal parameters [J]. Journal of Xidian University, 2017, 44(06): 26-30+58.
[7]  Peeters B, De Roeck G. Reference-based stochastic subspace identification in civil engineering [J]. Inverse Problems in Engineering, 1999, 100: 1~28.
[8]  樊可清,倪一清,高赞明. 改进随机子空间系统辨识方法及其在桥梁状态监测中的应用[J].中国公路学报,2004, 17(4): 70-73.
FAN Ke-qing, NI Yi-qing, GAO Zan-ming. Improved stochastic subspace identification and its application in bridge condition monitoring [J]. China journal of highway and transport, 2004, 17(4): 70-73.
[9]  Reynders E, Pintelon R, De Roeck G. Uncertainty bounds on modal parameters obtained from stochastic subspace identification [J]. Mechanical Systems and Signal Processing, 2008, 22(4): 948-969.
[10] 辛峻峰. 基于随机子空间法的海洋平台模态参数识别技术研究[D]. 中国海洋大学, 2013.
XIN Jun-feng. Research on modal parameter identification technology of offshore platform based on stochastic subspace identification [D]. Ocean University of China, 2013.
[11] Peeters Bart. System identification and damage detection in civil engineering. Ph.D. thesis. Department of civil engineering, K.U. Leuven, Belgium, 2000.
[12] Van Overschee P, De Moor B. Subspace identification for linear systems: theory, implementation, applications. Dordrecht, the Netherlands: Kluwer Academic Publishers, 1996.
[13] 常军,张启伟,孙利民. 随机子空间产生虚假模态及模态遗漏的原因分析[J]. 工程力学,2007, 24(11): 57-62.
CAHNG Jun, ZHANG Qi-wei, SUN Li-min. Analysis how stochastic subspace identification brings false modes and mode absence [J]. Engineering mechanics, 2007, 24(11): 57-62.
[14] 罗文波,夏松波,王莉,邹经相. 对稳定图识别真假模态的一点改进[J]. 应用力学学报,1999, 16(2): 112-116.
LUO Wen-bo, XIA Song-bo, WANG Li, ZOU Jing-xiang. The improvement of stability diagram in distinguishing mode [J]. China Journal of Applied Mechanics, 1999, 16(2): 112~116.

PDF(2267 KB)

387

Accesses

0

Citation

Detail

段落导航
相关文章

/