航天器太阳帆板多自由度减振装置设计

朱仕尧,雷勇军,郭欣

振动与冲击 ›› 2021, Vol. 40 ›› Issue (3) : 156-164.

PDF(1886 KB)
PDF(1886 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (3) : 156-164.
论文

航天器太阳帆板多自由度减振装置设计

  • 朱仕尧,雷勇军,郭欣
作者信息 +

Design of multi-DOF vibration reduction device for spacecraft solar array

  • ZHU Shiyao, LEI Yongjun, GUO Xin
Author information +
文章历史 +

摘要

航天器外伸的太阳帆板会引起驱动扰动和残余振动两类振动问题,且两者发生在不同的振动方向(扭转和弯曲),并属于不同的振动类型(强迫与自由振动)。本研究提出一种多自由度减振装置实施方案,通过调整驱动系统动态特性降低两类振动干扰。首先基于虚功原理建立了太阳帆板驱动系统动力学模型,分析了减振装置刚度和阻尼参数对驱动系统动态特性的影响规律,研制了减振装置原理样机,并通过试验验证其减振效果。结果表明,减振装置刚度特性对驱动系统的固有频率至关重要,需要谨慎考虑以避免共振;减振装置等效阻尼与驱动系统模态阻尼呈正相关,应采用高损耗系数的阻尼材料;减振装置能使驱动扰动降低40%以上,99%残余振动幅值衰减时间缩短56%以上。

Abstract

The outstretched solar array on spacecraft causes two types vibration problems of driving disturbance and residual vibration. They occur in torsional direction and in bending one, and belong to forced vibration and free one. Here, an implementation scheme of multi-DOF vibration reduction device (MVRD) was proposed to adjust dynamic characteristics of the solar array driving system (SADS) for the purpose of reducing two kinds vibration disturbances. Firstly, the dynamic model of SADS was established based on the principle of virtual work to analyze the influence law of stiffness and damping parameters of MVRD on dynamic characteristics of SADS. Then, a prototype of MVRD was developed, and its vibration-reduction effect was verified with tests. The results showed that stiffness characteristics of MVRD are very important to natural frequencies of SADS, and these characteristics need to be carefully considered to avoid resonance; the equivalent damping of MVRD is positively correlated to modal damping of SADS, damping materials with high loss coefficient should be adopted; MVRD can reduce driving disturbance by more than 40% and the attenuation time for 99% residual vibration amplitude value by more than 56%.

关键词

太阳帆板 / 多自由度 / 残余振动 / 驱动扰动 / 动力学特性

Key words

solar array / multi-DOF / residual vibration / driving disturbance / dynamic characteristics

引用本文

导出引用
朱仕尧,雷勇军,郭欣. 航天器太阳帆板多自由度减振装置设计[J]. 振动与冲击, 2021, 40(3): 156-164
ZHU Shiyao, LEI Yongjun, GUO Xin. Design of multi-DOF vibration reduction device for spacecraft solar array[J]. Journal of Vibration and Shock, 2021, 40(3): 156-164

参考文献

[1] Jiang, J.P., Li, D.X. Robust H∞ Vibration Control for Smart Solar Array Structure [J]. Journal of Vibration and Control, 2011, 17(4):505-515.
[2] Iwata, T. Attitude and pointing dynamics of the Advanced Land Observing Satellite (ALOS): flight results and characterization [J]. Journal of Space Technology and Science, 2007, 23(1): 20-29.
[3] CSA Engineering Inc. Design and application of vibration suppression [EB/OL]. http://www.csaengineering.com, 2005.
[4] 刘超. 粘弹性阻尼器测试设备的设计与实现 [D]. 哈尔滨: 哈尔滨工业大学, 2014.
 Liu, C. Design and inplementation pf viscoelastic dampers test equipment [D]. Harbin: Harbin Institute of Technology, 2014.
[5] Jia, Y.H., Xu, S.J.,Hu, Q. Dynamics of a spacecraft with large flexible appendage constrained by multi-strut passive damper [J]. Acta Mechanica Sinica, 2013, 2(29): 294-308.
[6] Kong, Y., Huang, H. Design and experiment of a passive damping device for the multi-panel solar array [J]. Advances in Mechanical Engineering, 2017, 9(2): 1-10.
[7] Kienholz, A.D., Pendleton, S.C. Demonstration of solar array vibration suppression [A]. In.Smart structures and materials [C]. Orlando Florida: Proceedings of SPIE, 1994. 59-72.
[8] Weck, O., Hollister, W. Challenges and solutions for low-area-density spacecraft components application to ultra-thin solar panel technology [C]// Defense & Civil space programs conference and exhibit. Huntsville, AL: von Braun Center, 1998.
[9] Nye, T.W., Ghaby, R.A., Dvorsky, G.R. The use of smart structures for spacecraft vibration suppression [A]. In.44th Congress of the International astronautical federation [C]. Graz, Austria., 1993.
[10] 陈亚梅. 基于形状记忆合金的太阳帆板的变结构控制 [J]. 机械制造与自动化, 2009, 38(3): 6-9.
 Chen, Y.M. Variable structure control of solar panels based on shape menory alloy [J]. Machinery Manufacturing and Automation , 2009, 38(3): 6-9.
[11] Qiu, Z.C., Wu, H.X. Experimental researches on sliding mode active vibration control of flexible piezoelectric cantilever plate integrated gyroscope [J]. Thin-Walled Structures, 2009, 47(8-9): 836-846.
[12] 胡庆雷. 挠性航天器姿态机动的主动振动控制 [D]. 哈尔滨: 哈尔滨工业大学, 2006
 Hu, Q.L. Active vibration control of flexible spacecraft during attitude maneuver [D]. Harbin: Harbin Institute of Technology, 2006.
[13] Chen, J., Cheng, W., Li, M. Modeling, measurement and simulation of the disturbance torque generated via solar array drive assembly [J]. Science China-Technological Sciences, 2018, 61(4): 587-603.
[14] Sattar, M., Wei, C. Analysis of coupled torsional disturbance behavior of micro-stepped solar array drives [J]. Journal of Sound and Vibration, 2019, 442: 572-597.
[15] Zhou, T., Guo, H., Xu, J., et al. Adaptive robust control with input shaping technology for solar array drive system [J]. Acta Astronautica, 2017, 140: 264-272.
[16] Atlas, G., Thomin, G. Experiences of CNES and SEP on space mechanisms rotating at low speed [R]. N8729868, 1987.
[17] Zhu, S.Y., Lei, Y.J. Disturbance analysis and feedforward compensation for the flexible solar array sun-tracking drive [J]. Proceedings Institution Mechanical Engineers Part G: Journal of Aerospace Engineering, 2015, 229(14): 2646-2658.
[18] Zhang, M., Zhu, X.L., Lu, J.D., et al. A high stablity control method for solar array drive mechanism [J]. Aerospace Control and Application, 2010, 36(4): 46-49,62.
[19] Si, Z.H.,Liu, Y.W. High accuracy and high stability attitude control of a satellite with a rotating solar array [J]. Journal of Astronautics, 2010, 31(12): 2697-2703.
[20] Zhu, S.Y., Lei, Y.J., Wu, X.F., et al. Effect of drive mechanisms on dynamic characteristics of spacecraft tracking-drive flexible systems [J]. Jounal of Sound and Vibration, 2015, 343: 194-215.

PDF(1886 KB)

Accesses

Citation

Detail

段落导航
相关文章

/