基于频响函数奇异值的模型修正方法

曹明明,彭珍瑞,刘满东

振动与冲击 ›› 2021, Vol. 40 ›› Issue (3) : 195-203.

PDF(2286 KB)
PDF(2286 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (3) : 195-203.
论文

基于频响函数奇异值的模型修正方法

  • 曹明明,彭珍瑞,刘满东
作者信息 +

Model updating method based on singular value of frequency response function

  • CAO Mingming, PENG Zhenrui, LIU Mandong
Author information +
文章历史 +

摘要

为减少实测环境中噪声的干扰,提出了一种基于频响函数奇异值的模型修正方法。利用计算得到的频响函数重构吸引子矩阵,对其进行奇异值分解,并在受噪声影响时根据极值点数量突变原则选择保留主要特征信息的奇异值个数,然后确定待修正参数;采用拉丁超立方抽样抽取初始样本点,结合修正参数所对应的奇异值响应,用粒子群算法寻得最优相关系数,构建Kriging模型;以奇异值响应差的平方最小构造目标函数,利用布谷鸟算法求解参数修正值。仿真算例表明:以奇异值作为结构响应,构建Kriging模型能获得较高的修正精度;在频响函数中加入不同信噪比的高斯白噪声,仍能得到较满意的修正效果,证明了本文方法对噪声具有较强的鲁棒性。

Abstract

In order to reduce noise interference in measurement environment, a model updating method based on singular value of frequency response function (FRF) was proposed. Firstly, FRF obtained with calculation was used to reconstruct the attractor matrix, and the singular value decomposition (SVD) was performed for it. Under influence of noise, the number of singular values containing the main characteristic information was selected according to the principle of sudden change in the number of extreme value points, and then parameters to be corrected were determined. Secondly, initial sample points were extracted with Latin hypercube sampling, and the particle swarm optimization algorithm was used to find the optimal correlation coefficient, it was combined with singular value response corresponding to parameters to be corrected to construct Kriging model. Then, the objective function was constructed using the least square of the response difference of singular value, and Cuckoo algorithm was used to solve parameter correction values. Simulation examples showed that Kriging model can obtain higher correction accuracy by using singular value as structural response; adding Gaussian white noise with different signal-to-noise ratios in FRF, a more satisfactory updating effect can be obtained to verify stronger robustness of the proposed method to noise.

关键词

模型修正 / 频响函数 / 奇异值分解 / 极值点 / 粒子群算法 / Kriging模型

Key words

model updating / frequency response function (FRF) / singular value decomposition (SVD) / extreme value point / particle swarm optimization algorithm / Kriging model

引用本文

导出引用
曹明明,彭珍瑞,刘满东. 基于频响函数奇异值的模型修正方法[J]. 振动与冲击, 2021, 40(3): 195-203
CAO Mingming, PENG Zhenrui, LIU Mandong. Model updating method based on singular value of frequency response function[J]. Journal of Vibration and Shock, 2021, 40(3): 195-203

参考文献

[1] 李  辉,丁  桦. 结构动力模型修正方法研究进展[J]. 力学进展,2005,35(2):170-180.
LI Hui, DING Hua. Progress in model updating for structural dynamics [J]. Advances in Mechanics, 2005, 35(2): 170-180.
[2] 郭勤涛,张令弥,费庆国. 结构动力学有限元模型修正的发展——模型确认[J]. 力学进展,2006,36(1):36-42.
GUO Qin-tao, ZHANG Ling-mi, FEI Qing-guo. From FE model updating to model validation: Advances in modeling of dynamic structures [J]. Advances in Mechanics, 2006, 36(1): 36-42.
[3] 李伟明,洪嘉振. 基于频响函数的模型修正方法[J]. 上海交通大学学报,2011,45(10):1455-1459.
LI Wei-ming, HONG Jia-zhen. Research on model updating method based on frequency response functions [J]. Journal of Shanghai Jiaotong University, 2011, 45(10): 1455-1459.
[4] Khodaparast H H, Mottershead J E, Badcock K J. Interval model updating with irreducible uncertainty using the Kriging predictor[J]. Mechanical Systems and Signal Processing, 2011,25(4):1204-1226.
[5] 胡俊亮,颜全胜,郑恒斌,等. 基于Kriging模型的钢管混凝土连续梁拱桥有限元模型修正[J]. 振动与冲击,2014,33(14):33-39.
HU Jun-liang, YAN Quan-sheng, ZHENG Heng-bin, et al. CFST arch/continuous beam bridge FEM model updating based on Kriging model [J]. Journal of Vibration and Shock, 2014, 33(14): 33-39.
[6] 张冬冬,郭勤涛. Kriging响应面代理模型在有限元模型确认中的应用[J]. 振动与冲击,2013,32(9):187-191.
ZHANG Dong-dong, GUO Qin-tao. Application of Kriging response surface in finite element model validation [J]. Journal of Vibration and Shock, 2013, 32(9): 187-191.
[7] 郭俊龙,马立元,李永军,等. 大型复杂钢管焊接结构损伤识别新方法[J]. 振动与冲击,2016,35(18):186-189+195.
GUO Jun-long, MA Li-yuan, LI Yong-jun, et al. New damage identification method for large complex steel tube welded structure [J]. Journal of Vibration and Shock, 2016, 35(18): 186-189+195.
[8] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报,2016,37(11):3197-3225.
HAN Zhong-hua. Kriging surrogate model and its application to design optimization: a review of recent progress [J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225.
[9] 王巨涛,王春洁,宋顺广. 结构加速度频响函数模型修正的Kriging方法[J]. 工程科学学报,2017,39(7):1087-1093.
WANG Ju-tao, WANG Chun-jie, SONG Shun-guang. Structural model updating of acceleration frequency response function based on Kriging method [J]. Chinese Journal of Engineering, 2017, 39(7): 1087-1093.
[10] Wang J T, Wang C J, Zhao J P. Frequency response function-based model updating using Kriging Model[J]. Mechanical Systems and Signal Processing,2017,87(A): 218-228.
[11] 张  勇,侯之超,赵永玲. 基于频响函数截断奇异值响应面的有限元模型修正[J]. 振动工程学报,2017,30(3): 341-348.
ZHANG Yong, HOU Zhi-chao, ZHAO Yong-ling. Finite element model updating based on response surface of the truncated singular values of frequency response functions [J]. Journal of Vibration Engineering, 2017, 30(3): 341-348.
[12] 赵学智,叶邦彦,陈统坚. 矩阵构造对奇异值分解信号处理效果的影响[J]. 华南理工大学学报(自然科学版),2008,36(9):86-93.
ZHAO Xue-zhi, YE Bang-yan, CHEN Tong-jian. Influence of matrix creation way on signal processing effect of singular value decomposition [J]. Journal of South China University of Technology (Natural Science Edition), 2008, 36(9): 86-93.
[13] Sanliturk K Y, Cakar O. Noise elimination from measured frequency response functions[J]. Mechanical Systems and Signal Processing,2005,19(3),615-631.
[14] 张  磊,彭伟才,原春晖,等. 奇异值分解降噪的改进方法[J]. 中国舰船研究,2012,7(5):83-88.
ZHANG Lei, PENG Wei-cai, YUAN Chun-hui, et al. An improved method for noise reduction based on singular value decomposition [J]. Chinese Journal of Ship Research, 2012, 7(5): 83-88.
[15] Mahmoudvand R, Zokaei M. On the singular values of the Hankel matrix with application in singular spectrum analysis[J]. Chilean Journal of Statistics,2012,3(1):43-56.
[16] 游海龙,贾新章. 基于遗传算法的Kriging模型构造与优化[J]. 计算机辅助设计与图形学学报,2007,19(1):64-68.
YOU Hai-long, JIA Xin-zhang. The construction and optimization of Kriging metamodel based on Genetic Algorithms [J]. Journal of Computer-aided Design & Computer Graphics, 2007, 19(1): 64-68.
[17] Kennedy J, Eberhart R. Particle swarm optimization [C]// Proceedings of the 4th IEEE International Conference on Neural Networks. Piscataway: IEEE Service Center,1995: 1942-1948.
[18] Yang X S, Deb S. Cuckoo Search via Lévy Flights [C]// Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on. IEEE,2010: 210-214.

PDF(2286 KB)

Accesses

Citation

Detail

段落导航
相关文章

/