包装件振动可靠性的不确定度量化及灵敏度分析

朱大鹏,魏洁

振动与冲击 ›› 2021, Vol. 40 ›› Issue (3) : 204-211.

PDF(1097 KB)
PDF(1097 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (3) : 204-211.
论文

包装件振动可靠性的不确定度量化及灵敏度分析

  • 朱大鹏,魏洁
作者信息 +

Uncertainty quantification and sensitivity analysis of package vibration reliability

  • ZHU Dapeng, WEI Jie
Author information +
文章历史 +

摘要

研究包装件参数不确定性对振动可靠性变化的影响,并分析振动可靠性指标对各不确定参数的灵敏度。采用Karhunen-Loeve展开将具有一定谱特征的平稳随机振动表示在标准正态随机变量空间中,应用一阶可靠性方法分析线性包装件振动可靠性指标。考虑缓冲材料弹性特性、阻尼特性、产品主体和脆弱部件之间的弹性特性、阻尼特性四个随机参数,对这些参数进行等概率转换,将它们用标准正态随机变量等效表示,根据拉丁超立方采样原则,在四维标准正态随机变量空间采样,应用数值分析研究可靠性指标的变化情况。根据可靠性指标的概率分布选取合理的正交混沌多项式类型,应用非嵌入分析法分析混沌多项式的系数。在获得可靠性指标的多项式混沌展开表达后,采用Sobol法分析可靠性指标的全局灵敏度。文中给出了一个实例分析,介绍了应用多项式混沌展开对振动可靠性指标进行不确定量化的过程及可靠性指数的分析结果。

Abstract

Here, effects of package parameters uncertainty on its vibration reliability was studied, the sensitivity of reliability index to each package uncertain parameter was analyzed. Karhunen-Loeve expansion was used to express a stationary random vibration with certain spectral characteristics in the standard normal random variable space. The first-order reliability method was applied to analyze the vibration reliability index of linear package. Four random parameters of cushioning material elastic property, cushioning material damping one, elastic one between product main body and vulnerable parts, and damping one between product main body and vulnerable parts were considered. These parameters were converted with equal probability into equivalent standard normal random variables. According to Latin hypercube sampling principle, sampling was done in the four-dimensional standard normal random variable space, and numerical analysis was applied to study the reliability index’s changes. According to the probability distribution of the reliability index, the reasonable type of orthogonal chaotic polynomial was selected, and coefficients of the chaotic polynomial were analyzed using the non-embedding analysis method. After obtaining the polynomial chaos expansion expression of the reliability index, the global sensitivity of the reliability index was analyzed using Sobol method. An example analysis was given here. The uncertainty quantification process of the vibration reliability index using polynomial chaos expansion and analysis results of the reliability index were introduced.

关键词

不确定度量化 / 可靠性指标 / 多项式混沌展开 / 全局灵敏度 / Sobol指标分析

Key words

uncertainty quantification / reliability index / polynomial chaos expansion / global sensitivity / Sobol index analysis

引用本文

导出引用
朱大鹏,魏洁. 包装件振动可靠性的不确定度量化及灵敏度分析[J]. 振动与冲击, 2021, 40(3): 204-211
ZHU Dapeng, WEI Jie. Uncertainty quantification and sensitivity analysis of package vibration reliability[J]. Journal of Vibration and Shock, 2021, 40(3): 204-211

参考文献

[1] 王军,王志伟. 半正弦脉冲激励下考虑易损件的正切型包装系统冲击特性研究[J]. 振动与冲击,2008,27(1):167-168.
WANG Jun, WANG Zhi-wei. 3-dimensional shock response spectra characterizing shock response of a tangent packaging system with critical components[J]. Journal of Vibration and Shock, 2008,27(1):167-168.
[2] 王军,王志伟. 考虑易损件的正切型包装系统冲击破损边界曲面研究[J]. 振动与冲击,2008,27(2):166-167.
WANG Jun, WANG Zhi-wei. Damage boundary surface of a tangent nonlinear packaging system with critical component[J]. Journal of Vibration and Shock, 2008,27(2):166-167.
[3] 卢富德, 陶伟明, 高德. 具有简支梁式易损部件的产品包装系统跌落冲击研究[J]. 振动与冲击, 2012, 31(5):79-81.
LU Fu-de, TAO Wei-ming, GAO De. Drop impact analysis on item packaging system with beam type elastic critical component[J]. Journal of Vibration and Shock, 2012,31(5):79-81.
[4] 高德, 卢富德. 基于杆式弹性易损部件的非线性系统跌落冲击研究[J]. 振动与冲击, 2012, 31(15):47-49.
GAO De, LU Fu-de. Drop impact analysis of packaging system with bar type elastic critical components[J]. Journal of Vibration and Shock, 2012,31(15):47-49.
[5] Jiang Jiu-Hong, Wang Zhi-Wei. Dropping damage boundary curves for cubic and hyperbolic tangent packaging systems based on key component[J]. Packaging Technology and Science, 2012, 25(7):397-411.
[6] Gibert J. M , Batt G. S. Impact Oscillator Model for the Prediction of Dynamic Cushion Curves of Open Cell Foams[J]. Packaging Technology and Science, 2016, 29(8-9):437-449.
[7] Piatkowski T, Osowski P. Modified method for dynamic stress-strain curve determination of closed-cell foams[J]. Packaging Technology and Science, 2016, 29(6):337-349.
[8] 朱大鹏. 非线性包装件加速度响应首次穿越问题分析[J]. 振动与冲击, 2018, 37(24): 166-171.
ZHU Dapeng . Acceleration response first passage failure probability analysis for a nonlinear package[J]. JOURNAL OF VIBRATION AND SHOCK, 2018, 37(24): 166-171.
[9] 朱大鹏, 龚箭. 单自由度包装件位移响应的首次穿越损坏问题分析[J]. 包装工程, 2017, 38(21):76-81.
ZHU Dapeng, GONG Jian. First-passage failure of single-degree-of-freedom package displacement response[J]. Packaging Engineering, 2017, 38(21):76-81.
[10] 朱大鹏. 非线性包装系统中关键部件振动可靠度分析[J]. 振动与冲击, 已录用.
ZHU Dapeng. Vibration reliability analysis for critical component of nonlinear package system[J]. Journal of Vibration and Shock, Accepted.
[11] Fishman G S. Monte Carlo: concepts, algorithms, and applications[M]. Springer-Verlag, New York, 1995.
[12] Spanos P D , Ghanem R . Stochastic Finite Element Expansion for Random Media[J]. Journal of Engineering Mechanics, 1989, 115(5):1035-1053.
[13] Zhang J , Ellingwood B . Orthogonal Series Expansions of Random Fields in Reliability Analysis[J]. Journal of Engineering Mechanics, 1994, 120(12):2660-2677.
[14] Li C C, Der Kiureghian A D, Optimal discretization of random fields[J]. Journal of Engineering Mechanics, 1993, 119(6):1136-1154.
[15] Wiener N . The Homogeneous Chaos[J]. American Journal of Mathematics, 1938, 60(4):897-936.
[16] Ni P, Li J, Hong H, et al. Stochastic dynamic analysis of marine risers considering Gaussian system uncertainties[J]. Journal of Sound and Vibration, 2018, 416:224-243.
[17] Manan A, Cooper J E. Prediction of uncertain frequency response function bounds using polynomial chaos expansion[J]. Journal of Sound and Vibration, 2010, 329(16):3348-3358.
[18] Sepahvand K, Marburg S, Hardtke H J. Stochastic free vibration of orthotropic plates using generalized polynomial chaos expansion[J]. Journal of Sound and Vibration, 2012, 331(1):167-179.
[19] Sepahvand K, Marburg S. Identification of composite uncertain material parameters from experimental modal data[J]. Probabilistic Engineering Mechanics, 2014, 37:148-153.
[20] Sudret B. Global sensitivity analysis using polynomial chaos expansions[J]. Reliability Engineering and System Safety, 2008, 93(7):964-979.
[21] Terje Haukaas, Kiureghian A D . Parameter Sensitivity and Importance Measures in Nonlinear Finite Element Reliability Analysis[J]. Journal of Engineering Mechanics, 2005, 131(10):1013-1026.
[22] Wan H P , M.D. Todd, Ren W X . Statistical framework for sensitivity analysis of structural dynamic characteristics[J]. Journal of Engineering Mechanics, 2017, 143(9).
[23] Bolado-Lavin R, Castaings W, Tarantola S. Contribution to the sample mean plot for graphical and numerical sensitivity analysis[J]. Reliability Engineering and System Safety, 2009, 94(6):1041-1049.
[24] Panunzio A M, Salles L, Schwingshackl C W. Uncertainty propagation for nonlinear vibrations: A non-intrusive approach[J]. Journal of Sound and Vibration, 2017, 389:309-325.
[25] Mourelatos Z P, Majcher M, Geroulas V. Time-Dependent Reliability Analysis of Vibratory Systems With Random Parameters[J]. Journal of Vibration and Acoustics, 2016, 138(3):031007.
[26] Liu Z J , Liu Z X, Peng Y B. Dimension reduction of Karhunen-Loeve expansion for simulation of stochastic processes[J]. Journal of Sound and Vibration, 2017, 408:168-189.
[27] Loeve M. Probability Theory[M]. Springer-Verlag, Berlin, 1977.
[28] Ghanem R G and Spanos P D. Stochastic finite elements : a spectral approach[M]. Dover, NY, 1991.
[29] Xiu D and Karniadakis G. The wiener-askey polynomial chaos for stochastic differential equations[J]. Journal of Scientific Computing, 2002,24(2):619-644.
[30] Sepahvand K, Marburg S and Hardtke H J. Uncertainty quantification in stochastic systems using polynomial chaos expansion[J]. International Journal of Applied Mechanics, 2010, 2(2):305-353.
[31] Lemaire M. Structural reliability[M]. John Wiley & Sons, 2009.
[32] Sepahvand K , Marburg S , Hardtke H J . Stochastic structural modal analysis involving uncertain parameters using generalized polynomial chaos expansion[J]. International Journal of Applied Mechanics, 2011, 3(3):587-606.
[33] Choi S K , Canfield R A , Grandhi R V , et al. Polynomial Chaos Expansion with Latin Hypercube Sampling for Estimating Response Variability[J]. AIAA Journal, 2004, 42(6):1191-1198.
[34] Sobol I.M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation, 2001, 55(1-3):271-280.
[35] 朱大鹏, 周世生. 包装系统的动态响应与模态参数识别方法[J]. 西安理工大学学报, 2010, 26(3):336-340.
ZHU Dapeng, ZHOU Shisheng. The dynamic response and the modal parameters identification in packaging system[J]. Journal of Xi’an University of Technology, 2010, 26(3):336-340.

PDF(1097 KB)

372

Accesses

0

Citation

Detail

段落导航
相关文章

/