LNG超低温调节阀阀杆流激共振分析

王伟波1,2,郝娇山1,2,刘柏圻2,杨恒虎2,李树勋3

振动与冲击 ›› 2021, Vol. 40 ›› Issue (3) : 218-225.

PDF(3074 KB)
PDF(3074 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (3) : 218-225.
论文

LNG超低温调节阀阀杆流激共振分析

  • 王伟波1,2,郝娇山1,2,刘柏圻2,杨恒虎2,李树勋3
作者信息 +

Flow-inducedresonance analysis of valve stem for LNG ultra-low temperature control valve

  • WANG Weibo1, 2, HAO Jiaoshan1, 2, LIU Baiqi2, YANG Henghu2, LI Shuxun3
Author information +
文章历史 +

摘要

针对LNG接收站超低温调节阀小开度下阀杆流激共振问题,以DN200-Class600 LNG超低温调节阀5%、10%、20%、30%和50%开度的模型为研究对象。采用Fluent软件对各模型进行瞬态流场分析,并对阀塞和阀杆组件流固耦合面上的流体压力脉动时域信息进行监测,通过Tecplot软件对监测信息进行快速傅里叶变换(FFT),获得流体施加于阀杆上的激振力频率。另外采用ANSYS Workbench软件对各模型进行流固耦合模态分析,得到阀塞和阀杆组件的流固耦合模态振型和模态频率。通过两种频率的比较对各开度下的调节阀阀杆流激共振问题进行了深入研究。结果表明,调节阀各开度下阀塞和阀杆组件上的压力脉动峰值频率均在60Hz以内,而其各阶流固耦合模态频率均大于120Hz,压力脉动频率避开了固有频率,阀杆不会发生流激共振现象。

Abstract

Aiming at the problem of flow-induced resonance of valve stem under small opening of an ultra-low temperature control valve in LNG terminal, models under 5%, 10%, 20%, 30% and 50% openings, respectively of DN200-Class600 LNG ultra-low temperature control valve were taken as study objects. The software Fluent was used to do transient flow field analysis of each model, and monitor fluid pressure fluctuation time-domain information on the fluid-solid coupled surface of valve plug and valve stem assembly. The software Tecplot was used to do fast Fourier transformation (FFT) of the monitored information, and obtain exciting force frequencies exerted on valve stem by fluid. In addition,the fluid-solid coupled modal analysis of each model was performed with the software ANSYS Workbench to obtain fluid-solid coupled modal shapes and modal frequencies of valve plug and valve stem assembly. The flow-induced resonance of the valve stem under each opening was studied deeply by comparing the two kinds of frequencies. The results showed that pressure fluctuation peak value frequencies on valve plug and stem assembly under each opening of the control valve are all within the range of less than 60Hz; their various fluid-solid coupled modal frequencies are larger than 120 Hz; pressure fluctuation frequency avoids natural frequency, and valve stem does not produce flow-induced resonance.

关键词

超低温调节阀 / 瞬态流场 / 流固耦合 / 模态分析 / 阀杆流激共振

Key words

ultra-low temperature control valve / transient flow field / fluid-structure interaction / modal analysis / flow-induced resonance of valve stem

引用本文

导出引用
王伟波1,2,郝娇山1,2,刘柏圻2,杨恒虎2,李树勋3. LNG超低温调节阀阀杆流激共振分析[J]. 振动与冲击, 2021, 40(3): 218-225
WANG Weibo1, 2, HAO Jiaoshan1, 2, LIU Baiqi2, YANG Henghu2, LI Shuxun3. Flow-inducedresonance analysis of valve stem for LNG ultra-low temperature control valve[J]. Journal of Vibration and Shock, 2021, 40(3): 218-225

参考文献

[1] 徐登伟, 赵双龙, 孙磊. LNG超低温调节阀设计研究[C]// 中国航天第三专业信息网第三十八届技术交流会暨第二届空天动力联合会议论文集. 航天推进技术产业应用. 2017.
 XU Deng-wei, ZHAO Shuang-long, SUN Lei. Research on the design of LNG ultra-low temperature control valve[C]// Proceedings of the 38th Technical Exchange Conference and the 2nd Aerospace Power Joint Conference of China Aerospace Third Professional Information Network. Aerospace Propulsion Technology Industrial application.
[2] 王雯, 傅卫平, 孔祥剑,等. 单座式调节阀阀芯阀杆系统流固耦合振动研究[J]. 农业机械学报, 2014, 45(5):291-298.
 WANG Wen, FU Wei-ping, KONG Xiang-jian, et al. Study on Fluid-Structure Coupling Vibration of Spool Valve Stem System with Single Seat Control Valve[J]. Transactions of the Chinese Society of Agricultural Machinery, 2014, 45(5): 291 -298.
[3] 刘丽, 张小斌, 邱利民. 大流量气体管道中阀门诱发振动机理研究[J]. 低温工程, 2016(4):50-55.
 LIU Li, ZHANG Xiao-bin, QIU Li-min. Mechanisms of valve-induced vibration in a gas pipeline with large flow rate[J]. Cryogenics, 2016(4):50-55.
[4] YU Cheng-guo , YU Ze-bin , LIU Zong-zheng, et al. The Research on Vibration Analysis of Blow-Down Wind Tunnel Pressure Regulating Valves[J]. Applied Mechanics and Materials, 2013, 397-400:621-624.
[5]  Yonezawa K , Ogawa R , Ogi K , et al. Flow-induced vibration of a steam control valve[J]. Journal of Fluids and Structures, 2012, 35:76-88.
[6] 申永康, 方寒梅, 赵春龙, et al. 大型拦污栅结构液固耦合流激振动分析[J]. 振动与冲击, 2014, 33(21):137-141.
 SHEN Yong-kang, FANG Han-mei, ZHAO Chun-long, et al. Flow-induced vibration of large trash-racks considering fluid-structure interaction[J]. Journal of Vibration & Shock, 2014, 33(21):137-141.
[7] 沈春颖, 何士华, 杨婷婷, et al. 平面直升闸门流固耦合振动同步测试模型试验研究[J]. 振动与冲击, 2016, 35(19):219-224.
 SHEN Chun-ying, HE Shi-hua, YANG Ting-ting, et al. Model tests for synchronous measurement of fluid-structure interaction vibration of a plane vertical lift gate [J]. Journal of Vibration & Shock, 2016, 35(19): 219-224.
[8] 李树勋,王天龙,徐晓刚,等.高压降套筒式蒸汽疏水阀振动特性研究[J].振动与冲击,2018,37(04):147-152.
 LI Shu-xun, WANG Tian-long, XU Xiao-gang, et al. A study on the vibration characteristics of high pressure drop sleeve trap [J].Journal of Vibration and Shock,2018,37(04):147-152.
[9] 王福军. 计算流体动力学分析[M]. 清华大学出版社, 2004.
 WANG Fu-jun.Computational Fluid Dynamics Analysis [M] .Tsinghua University Press, 2004.
[10] XU Yun , Tan Lei , Liu Ya-bin , et al. Pressure fluctuation and flow pattern of a mixed-flow pump with different blade tip clearances under cavitation condition[J]. Advances in Mechanical Engineering, 2017, 9(4):168781401769622.
[11] YUAN Shouqi, NI Yong-yan, PAN Zhong-yong, et al. Unsteady Turbulent Simulation and Pressure Fluctuation Analysis for Centrifugal Pumps[J]. Chinese Journal of Mechanical Engineering, 2009, 22(1):64-69.
[12] 李晋, 闫清东, 王玉岭,等. 液力变矩器泵轮内流场非定常流动现象研究[J]. 机械工程学报, 2016, 52(14):188-195.
 LI Jin, YAN Dong-qing, WANG Yu-ling, et al. Research on Unsteady Flow Field of the Pump in Hydraulic Torque Converter [J]. Journal of Mechanical Engineering,  2016, 52(14):188-195.
[13] 孔祥帅, 王海民, 刘欢. 三偏心蝶阀蝶板振动特性分析与实验研究[J]. 电子科技, 2017, 30(7):72-75.
 KONG Xiang-shuai, WANG Hai-min, LIU Huan. Analysis of the Vibration Characteristics of the Tri-eccentric Butterfly Valve Disc[J]. Electronic Science and Technology, 2017, 30(7):72-75.
[14] Tufoi M, Gillich G.R, Z.-I. Praisach, et al. Modal Analysis of a Butterfly Valve with Different Stiffening Elements[J]. Romanian Journal of Acoustics & Vibration, 2016.
[15] Vakili-Tahami F , Zehsaz M , Saeimisadigh M A , et al. Numerical modal analysis of Howell-Bunger valve using FEM method[J]. International Journal of Applied Engineering Research (0976-4259, 2011.
[16] QU Dong-yue , GUO Zhong-yuan , XIE Xiao-zeng . Vibration Study on the Modal of the Control Valve[J]. Applied Mechanics and Materials, 2014, 543-547.
[17] CAO Fang , WANG Yong . Modal Analysis on Fluid–Structure Interaction System of a Large-Scale Gas Control Valve[J]. Advanced Materials Research, 2011, 305:15-18.
[18] 朱红钧. ANSYS 14.5热流固耦合实战指南[M]. 人民邮电出版社, 2014.
 ZHU Hong-jun. ANSYS 14.5 Practical Guide for Thermal-Fluid-Solid Coupling [M]. People's Posts and Telecommunications Press, 2014.
[19] American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section II, Part D[S]. 2019.

PDF(3074 KB)

Accesses

Citation

Detail

段落导航
相关文章

/