以尺度空间对信号频谱中共振频段的识别能力为基础,结合变分模态分解(VMD)对信号的自适应分解能力,提出了预估惩罚因子的尺度空间引导VMD算法。该算法的核心包括以尺度空间对信号频段的共振频段划分从而确定VMD中的本征固有模态个数,并根据共振频段边界预估VMD各个本征固有函数的初始中心频率与相应的惩罚因子取值,从而提高VMD的自适应性以及准确性。仿真结果表明,该方法能够正确识别低信噪比条件下的故障信号的共振频带,并对信号进行准确的分解。应用高速列车轴箱轴承实验数据对该方法进行实验验证,能够有效分解信号中包含的不同故障冲击;与选择不同惩罚因子的VMD算法相比,能够更准确地提取出信号中的不同故障冲击,对VMD分解的自适应性与准确性有着显著提高。
Abstract
Based on the recognition ability of scale space for resonance frequency band in signal spectrum, combined with the adaptive decomposition ability of variational mode decomposition (VMD), a scale space guided VMD algorithm was proposed to predict penalty factor. The core of the algorithm included dividing resonance frequency bands of signal frequency band in scale space to determine the number of intrinsic modes in VMD, estimate the initial center frequency and corresponding penalty factor of each intrinsic function of VMD according to the boundary of resonance frequency band, and improve the adaptability and accuracy of VMD. The simulation results showed that the proposed method can recognize resonance frequency bands of a faulty signal under low SNR condition and guide VMD to correctly decompose the signal; the test data of axle box bearing of high-speed train are used to verify the proposed method being able to effectively decompose different fault shocks in signal; compared to the VMD algorithm with different penalty factors, the proposed method can more accurately extract different fault shocks, and significantly improve the adaptability and accuracy of VMD.
关键词
轴箱轴承 /
故障诊断 /
尺度空间 /
变分模态分解
{{custom_keyword}} /
Key words
axle box bearing /
fault diagnosis /
scale space /
variational mode decomposition (VMD)
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]. 崔玲丽, 王婧, 邬娜, et al. 基于轴承故障信号特征的自适应冲击字典匹配追踪方法及应用[J]. 振动与冲击, 2014, 33(11):54-60.
CUI Ling-li, WANG Jing, WU Na,et al. Bearing fault diagnosis based on self-adaptive impulse dictionary matching pursuit[J]. Journal of Vibration and Shock, 2014,33(11):54-60.
[2]. 何刘, 林建辉, 丁建明, et al. 调幅-调频信号的经验模态分解包络技术和模态混叠[J]. 机械工程学报, 2017(2).
HE Liu, LIN Jianhui, DING Jianming et al. Empirical Mode Decomposition Envelope Technique and Mode Mixing Problem in Amplitude Modulation-frequency Modulation Signals, Journal of Mechanical Engineering, ,2017(2).
[3]. 雷亚国. 基于改进Hilbert-Huang变换的机械故障诊断[J]. 机械工程学报, 2011, 47(5).
LEI Yaguo. Machinery Fault Diagnosis Based on Improved Hilbert-Huang Transform, Journal of Mechanical Engineering, 2011, 47(5).
[4]. Dragomiretskiy K, Zosso D. Variational Mode Decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3):531-544.
[5]. 白堂博, 张来斌, 唐满红, et al. 基于VMD的旋转机械故障诊断方法研究[J]. 石油矿场机械, 2016, 45(8):22-27.
BAI Tangbo, ZHANG Laibin, TANG Manhong et al. Research on VMD Based on Fault Diagnosis Method for Rotating Machinery[J], Oil Field Equipment, 2016, 45(8):22-27.
[6]. 钱林, 康敏, 傅秀清, et al. 基于VMD的自适应形态学在轴承故障诊断中的应用[J]. 振动与冲击, 2017(3).
QIAN Lin, KANG Min, FU Xiuqing et al. Application of Adaptive Morphology in Bearing Fault Diagnosis Based on VMD[J]. Journal of Vibration and Shock, 2017(3).
[7]. 张云强, 张培林, 王怀光, et al. 结合VMD和Volterra预测模型的轴承振动信号特征提取[J]. 振动与冲击, 2018.
ZHANG Yunqiang, ZHANG Peilin, WANG Huaiguang et al. Feature Extraction Method of Rolling Bearing Vibration Signals Based on VMD and Volterra Prediciton Model[J]. Journal of Vibration and Shock, 2018
[8]. Gilles J, Heal K. A parameterless scale-space approach to find meaningful modes in histograms — Application to image and spectrum segmentation[J]. International Journal of Wavelets Multiresolution & Information Processing, 2014, 12(06):391-209.
[9]. Lindeberg T. Scale-space for discrete signals[J]. Pattern Analysis & Machine Intelligence IEEE Transactions on, 1990, 12(3):234-254.
[10]. Yan H. A modified scale-space guiding variational mode decomposition for high-speed railway bearing fault diagnosis[J].Journal of Sound and Vibration,2019,444:216-234.
[11]. Jimeng L. Periodic impulses extraction based on improved adaptive VMD and sparse code shrinkage denoising and its application in rotating machinery fault diagnosis[J]. Mechanical Systems and Signal Processing,2019,126:568-589
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}