180m高三管集束式钢烟囱风荷载特性风洞试验研究

王晓海,柯世堂,余文林,杜琳

振动与冲击 ›› 2021, Vol. 40 ›› Issue (3) : 254-262.

PDF(3747 KB)
PDF(3747 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (3) : 254-262.
论文

180m高三管集束式钢烟囱风荷载特性风洞试验研究

  • 王晓海,柯世堂,余文林,杜琳
作者信息 +

Wind tunnel tests for wind load characteristics of 180 m-high 3-tube cluster steel chimney

  • WANG Xiaohai, KE Shitang, YU Wenlin, DU Lin
Author information +
文章历史 +

摘要

为系统研究180m三管集束式钢烟囱风荷载分布模式和时变特性,以国内某在建180m高三管集束式钢烟囱为研究对象,首先通过同步刚体测压风洞试验,得到了不同风向角下三管集束式钢烟囱各排烟筒表面平均与脉动风荷载。在此基础上,对比分析了典型风向角下三个排烟筒表面平均风压、脉动风压、升/阻力系数和整体平均体型系数的分布规律,并探讨了风压信号的高斯和非高斯分布及时变特性,归纳了信号在时间和空间上的相关性,总结了风向角和干扰效应对三管集束式烟囱体系气动力分布的影响规律。研究发现:三管集束式烟囱体系风荷载干扰效应主要表现为遮挡效应,整体体型系数最大值为0.71。在0°、90°和180°风向角下,风压信号分别有59.9%、53.4%和56.9%表现出大偏斜和高峰态分布特征。主要研究结论可为多管集束式钢烟囱的风荷载取值提供科学依据。

Abstract

Here, to systematically study wind load distribution mode and time-varying characteristics of a 180 m-high 3-tube cluster steel chimney, a certain 180 m-high 3-tube cluster steel chimney under construction in our country was taken as the study object. Firstly, through wind tunnel tests of synchronous rigid body pressure measurement, average and fluctuating wind loads on surface of each exhaust pipe of the 3-tube cluster steel chimney under different wind direction angles were obtained. On this basis, distribution laws of mean wind pressure, fluctuating wind pressure, lift coefficient, drag coefficient and overall average shape coefficient on surface of 3 exhaust pipes of the 3-tube cluster steel chimney under typical wind direction angle were contrastively analyzed. Gauss and non-Gauss distributions and time-varying characteristics of wind pressure signals were discussed, correlations of wind pressure signals in time domain and space domain were concluded, and influence laws of wind direction angle and inference effect on aerodynamic force distribution of the 3-tube cluster chimney system were summarized. The study showed that the interference effect of wind load on the 3-tube cluster chimney system mainly is shielding effect, and the maximum overall shape coefficient is 0.71; under wind direction angles of 0°, 90° and 180°,  59.9%, 53.4% and 56.9% of wind pressure signals reveal characteristics of large deflection and high-peak distribution; the main study conclusions can provide a scientific basis for wind load values of multi-tube cluster steel chimney.

关键词

三管集束式钢烟囱 / 风洞试验 / 风荷载 / 干扰效应 / 时变特性

Key words

3-tube cluster steel chimney / wind tunnel test / wind load / interference effect / time-varying characteristics

引用本文

导出引用
王晓海,柯世堂,余文林,杜琳. 180m高三管集束式钢烟囱风荷载特性风洞试验研究[J]. 振动与冲击, 2021, 40(3): 254-262
WANG Xiaohai, KE Shitang, YU Wenlin, DU Lin. Wind tunnel tests for wind load characteristics of 180 m-high 3-tube cluster steel chimney[J]. Journal of Vibration and Shock, 2021, 40(3): 254-262

参考文献

[1]. Pritchard B N. Steel chimney oscillations: a comparative study of their reported performance versus predictions using existing design techniques[J]. Engineering Structures, 1984, 6(4): 315-323.
[2]. 陈鑫, 李爱群, 王泳, 等. 高耸钢烟囱环形TLD减振试验设计与模型修正[J]. 建筑结构学报, 2015, 36(1): 30-36.
Chen X, Li A Q, Wang Y, et al. Model design and updating for experiment of ring shaped TLD-control of high-rise steel chimney[J]. Journal of Building Structures, 2015, 36(1): 30-36.
[3]. 于昆龙, 王卫华, 黄汉杰, 等. 新型四管自立式钢烟囱的风荷载[J]. 西南交通大学学报, 2011, 46(3): 421-426.
Yu K L, Wang W H, Huang H J, et al. Investigations of Wind Loads on a New Type of Self-Supporting Four Pipe Steel Chimney[J]. Journal of Southwest Jiaotong University, 2011, 46(3):421-426.
[4]. 中华人民共和国住房和城乡建设部. 建筑结构荷载规范[M]. 中国建筑工业出版社, 2012.
[5]. Norberg, Christoffer. Fluctuating lift on a circular cylinder: review and new measurements[J]. Journal of Fluids & Structures, 2003, 17(1): 57-96.
[6]. Roshko A. Experiments on the flow past a circular cylinder at very high Reynolds numbers[J]. Journal of Fluid Mechanics, 1961, 10: 345-356.
[7]. 杜磊, 宁方飞. 高亚临界雷诺数圆柱绕流的尺度自适应模拟[J]. 力学学报, 2014, 46(4): 487-496.
Du L, Ning F F, Scale adaptive simulation of flows around a circular cylinder at high sub-critical reynolds number[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 487-496.
[8]. Yeon S M , Yang J , Stern F . Large-eddy simulation of the flow past a circular cylinder at sub- to super-critical Reynolds numbers[J]. Applied Ocean Research, 2016, 59: 663-675.
[9]. Zdravkovich M M. The effects of interference between circular cylinders in cross flow[J]. Journal of Fluids & Structures, 1987, 1(2): 239-261.
[10]. 杜晓庆, 王玉梁, 赵燕, 等. 高雷诺数下错列双圆柱气动干扰的机理研究[J]. 工程力学, 2018, 35(09): 223-231.
Du X Q, Wang Y L, Zhao Y, et al. On mechanisms of aerodynamic interference between two staggered circular cylinders at a high reynolds number[J]. Engineering Mechanics, 2018, 35(09): 223-231.
[11]. Sumner D. Two circular cylinders in cross-flow: A review[J]. Journal of Fluids & Structures, 2010, 26(6): 849-899.
[12]. 杨群, 刘小兵, 刘庆宽, 等. 正品字形布置三管钢烟囱风荷载的数值模拟[J]. 工程力学, 2017, 34(S1): 154-158.
Yang Q, Liu X B, Liu Q K, et al. Numerical simulation of wind load of three steel chimneys in regular triangular arrangement[J]. Engineering Mechanics, 2017, 34(S1): 154-158.
[13]. 丁伟亮, 国茂华, 张江霖, 等. 四管自立式钢烟囱风洞试验研究[J]. 武汉大学学报(工学版), 2011, 44(s1): 341-345.
Ding W L, Guo M H, Zhang J L, et al. Wind tunnel test of self-supporting four pipe steel chimney[J]. Engineering Journal of Wuhan University, 2011, 44(s1): 341-345.
[14]. Cao Y, Tamura T. Numerical investigations into effects of three-dimensional wake patterns on unsteady aerodynamic characteristics of a circular cylinder at Re=1.3×105[J]. Journal of Fluids & Structures, 2015, 59: 351-369.
[15]. 中华人民共和国住房和城乡建设部. 烟囱设计规范[M]. 中国建筑工业出版社, 2013.
[16]. Miroš Pirner. Wind pressure fluctuations on a cooling tower[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1982, 10(3): 343-360.
[17]. Ke S T, Wang H, Wang T G, et al. Comparison of comprehensive stress performances of super-large cooling tower in different four-tower arrangements under 3D asymmetric wind loads[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 179: 158-172.
[18]. Kim S, Wilson P A, Chen Z M. Large-eddy simulation of the turbulent near wake behind a circular cylinder: Reynolds number effect[J]. Applied Ocean Research, 2015, 49: 1-8.
[19]. 李玉学, 白硕, 杨庆山, 等. 大跨度封闭式柱面屋盖脉动风荷载非高斯分布试验研究[J]. 建筑结构学报, 2019, 40(7): 62-69.
Li B X, Bai S, Yang Q S, et al. Experiment study on non-Gaussian distribution of fluctuating wind load on long-span enclosed cylindrical shell roof[J]. Journal of Building Structures, 2019, 40(7): 62-69.
[20]. 陈伏彬, 李秋胜, 傅继阳, 等. 大跨屋盖风荷载的频域特性试验研究[J]. 振动与冲击, 2012, 31(5): 111-117.
Chen F B, Li Q S, Fu J Y, et al. Frequency domain characteristics of wind loads on a long span building roof[J]. Journal of Vibration and Shock, 2012, 31(5): 111-117.
[21]. 王浩, 柯世堂. 不同四塔组合形式对特大型冷却塔局部非高斯风压分布影响研究[J]. 工程力学, 2018, 35(08): 172-181.
Wang H, Ke S T. Research on non-gaussian wind pressure of four super-large cooling towers under different layouts[J]. Engineering Mechanics, 2018, 35(08): 172-181.
[22]. Ke S T, Ge Y J. Extreme Wind Pressures and Non-Gaussian Characteristics for Super-Large Hyperbolic Cooling Towers Considering Aeroelastic Effect[J]. Journal of Engineering Mechanics, 2015, 141(7), 04015010.
[23]. Karakas A I, Ozgan K, Daloglu A T. A parametric study for free vibration analysis of hyperbolic cooling towers on elastic foundation using consistent FEM-Vlasov model[J]. Archive of Applied Mechanics, 2016, 86(5): 869-882.

PDF(3747 KB)

Accesses

Citation

Detail

段落导航
相关文章

/