基于二维波束聚焦算法的低速冲击监测研究

常琦,孟瑶,杨维希,刘君

振动与冲击 ›› 2021, Vol. 40 ›› Issue (3) : 28-34.

PDF(1341 KB)
PDF(1341 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (3) : 28-34.
论文

基于二维波束聚焦算法的低速冲击监测研究

  • 常琦,孟瑶,杨维希,刘君
作者信息 +

Low speed impact monitoring based on 2-D beam focusing algorithm

  • CHANG Qi, MENG Yao, YANG Weixi, LIU Jun
Author information +
文章历史 +

摘要

冲击损伤监测是结构健康监测的主要研究内容之一,为提高冲击定位的精度以及传感器的利用效率,本文提出了一种基于十字阵列型传感器布置方法的二维波束聚焦冲击定位算法,在高精度的前提下有效减少了传统定位方法所需布置的传感器数量。通过十字阵列型的压电传感器布置方法,可以将远场的定位精度大大提高,对于内场的盲区采用四点圆弧定位算法进行冲击定位,从而将整个大型平板结构的冲击定位精度大大提高。通过实验研究验证了该方法的有效性与实用性。

Abstract

Impact damage monitoring is one of main research contents of structural health monitoring. In order to improve the accuracy of impact localization and the efficiency of sensor utilization, a 2-D beam focusing impact locating algorithm based on cross array sensor arrangement was proposed here. Under the premise of high precision, the number of sensors required by the traditional locating method was effectively reduced. With the method of cross array type piezoelectric sensor arrangement, the locating accuracy of the far field was greatly improved, and the 4-point arc locating algorithm was used for impact locating of the blind zone of the inner field, therefore, the impact locating precision of a whole large-scale plate structure was greatly improved. The effectiveness and practicability of the proposed method were verified with tests

关键词

冲击损伤监测 / 十字阵列 / 二维波束聚焦算法 / 声发射

Key words

impact damage monitoring / cross array / 2-D beam focusing algorithm / acoustic emission

引用本文

导出引用
常琦,孟瑶,杨维希,刘君. 基于二维波束聚焦算法的低速冲击监测研究[J]. 振动与冲击, 2021, 40(3): 28-34
CHANG Qi, MENG Yao, YANG Weixi, LIU Jun. Low speed impact monitoring based on 2-D beam focusing algorithm[J]. Journal of Vibration and Shock, 2021, 40(3): 28-34

参考文献

[1] Baluch A H, Falco O, Jimenez J L, et al. An efficient numerical approach to the prediction of laminate tolerance to Barely Visible Impact Damage[J]. Composite Structures, 2019, 225.
[2] Sikdar S, Kudela P, Radzieski M, et al. Online detection of barely visible low-speed impact damage in 3D-core sandwich composite structure[J]. Composite Structures, 2018, 185: 646-655.
[3] Qiu L, Yuan S, Zhang X, et al. A time reversal focusing based impact imaging method and its evaluation on complex composite structures[J]. Smart Materials And Structures, 2011, 20(10).
[4] 梁栋, 袁慎芳, 孙红兵. 一种高精度航空结构多主体协作冲击定位方法[J]. 南京航空航天大学学报, 2011, 43(02): 191-197. [Liang Dong, Yuan Shen fang, Sun Hong bing. Precise Impact Positioning Method Based on Aerospace Structure Multi-agent Coordination [J]. Journal of Nanjing University of Aeronautics& Astronautics, 2011, 43(02): 191-197.]
[5] Yuan S, Ren Y, Qiu L, et al. A Multi-Response-Based Wireless Impact Monitoring Network for Aircraft Composite Structures[J]. IEEE Transactions on Industrial Electronics, 2016, 63(12): 7712-7722.
[6] Saeedifar M, Mansvelder J, Mohammadi R, et al. Using passive and active acoustic methods for impact damage assessment of composite structures[J]. Composite Structures, 2019, 226.
[7] Shrestha P, Kim J-H, Park Y, et al. Impact localization on composite wing using 1D array FBG sensor and RMS/correlation based reference database algorithm[J]. Composite Structures, 2015, 125: 159-169.
[8] 熊稚莉. 基于分形理论的分布式光纤冲击监测技术研究[D].  南京航空航天大学, 2017. [Xiong Zhili. Impact Monitoring Technology Research of Distributed Optical Fiber Based on Fractal Theory[D]. Nanjing University of Aeronautics and Astronautics.2016.]
[9] 袁慎芳, 邱雷, 吴键, et al. 大型飞机的发展对结构健康监测的需求与挑战[J]. 航空制造技术, 2009, (22): 62-67. [Yuan Shenfang, Qiu Lei, Wu Jian. Challenge in Structural Health Monitoring of Large Aircraft Development[J]. Aeronautical Manufacturing Technology. 2009, (22): 62-67.]
[10] Yuan S, Lai X, Zhao X, et al. Distributed structural health monitoring system based on smart wireless sensor and multi-agent technology[J]. Smart Materials & Structures, 15(1): 1-8.
[11] Wang S, Liu Y, Zhou H, et al. Experimental study on failure process of arch dam based on acoustic emission technique[J]. Engineering Failure Analysis, 2019, 97: 128-144.
[12] Papulak T S. An inverse acoustical phased array technique for impact detection and location[D].  The University of Utah, 2012: 133.
[13] 江艳. 飞行器结构低速冲击载荷定位研究[D].  南京航空航天大学, 2013. [Jiang Yan. Research on Low Velocity Impact Load localization for Aircraft Structures[D]. Nanjing University of Aeronautics and Astronautics. 2013.]
[14] 王宗炼, 任会兰, 宁建国. 基于小波变换降噪的声发射源定位方法[J]. 振动与冲击, 2018, 37(04): 226-232+248. [Wang Zonglian, REN Huilan,etal. Acoustic emission source location based on wavelet transform de-noising[J]. Journal of Vibration and Shock, 2018, 37(04): 226-232+248.]
[15] 雷家艳, 姚谦峰, 雷鹰, et al. 基于随机振动响应互相关函数的结构损伤识别试验分析[J]. 振动与冲击, 2011, 30(08): 221-224+236. [LEI Jia-yan,etal. Structural damage detection method based on correlation function analysis of vibration measurement data [J]. Journal of Vibration and Shock, 2011, 30(08): 221-224+236.]
[16] 袁慎芳, 陶宝祺, 朱晓荣, et al. 应用小波分析及主动监测技术的复合材料损伤监测[J]. 材料工程, 2001, (02): 43-46. [Yuan Shen-fang, et al. Damage Self-diagnose of Composite Material Using Active Monitoring Technology and Wavelet Analysis Method[J]. Journal of Materials Engineering. 2001, (02): 43-46.]
[17] Lu Z, Yang C, Qin D, et al. Estimating the parameters of ultrasonic echo signal in the Gabor transform domain and its resolution analysis[J]. Signal Processing, 2016, 120: 607-619.
[18] Li Q, Lu Q. Impact localization and identification under a constrained optimization scheme[J]. Journal of Sound and Vibration, 2016, 366: 133-148.
[19] 赵林虎, 周丽. 复合材料蜂窝夹芯结构低速冲击位置识别研究[J]. 振动与冲击, 2012, 31(02): 67-71+108. [ZHAO Lin-hu,etal. Localization of low-velocity impact on a composite honeycomb sandwich structure [J]. Journal of Vibration and Shock, 2012, 31(02): 67-71+108.]
[20] Mostafapour A, Davoodi S, Ghareaghaji M. Acoustic emission source location in plates using wavelet analysis and cross time frequency spectrum[J]. Ultrasonics, 2014, 54(8): 2055-2062.

PDF(1341 KB)

Accesses

Citation

Detail

段落导航
相关文章

/