内激励型振荡衰减流作用下输流管道动力不稳定分析

张挺1,林震寰1,林通1,张恒2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (3) : 284-290.

PDF(795 KB)
PDF(795 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (3) : 284-290.
论文

内激励型振荡衰减流作用下输流管道动力不稳定分析

  • 张挺1,林震寰1,林通1,张恒2
作者信息 +

Dynamic instability analysis of pipeline conveying fluid under action of internally excited oscillation attenuation flow

  • ZHANG Ting1, LIN Zhenhuan1, LIN Tong1, ZHANG Heng21.College of Civil Engineering, Fuzhou University, Fuzhou 350116, China; #br# 2.Power China Guiyang Engineering Corporation Limited, Guiyang 550081, China
Author information +
文章历史 +

摘要

振荡衰减流作为一种内激励形式,对输流管道的稳定性和共振特性将产生影响。基于输流管道横向振动运动微分方程,引入指数衰减函数模拟水锤发生时流速呈现的振荡衰减特性,推导得到内激励型振荡衰减流作用下输流管道动力不稳定区域的表达式。在无衰减周期脉动流激励条件下,计算得到两种不同支撑输流管道的不稳定区域,与前人数值研究结果吻合良好。同时将引入的流速表达式与水锤条件下粘弹性输流管道模型计算得到的流速时程进行对比,表明所提出的流速表达式能较好地反映水锤激励下输流管道内水流的双向衰减特性。进一步分析了衰减特征参数对两端简支输流管道不稳定区域的影响,结果表明,内激励型振荡衰减流对于输流管道横向振动的影响不容忽视,当流速衰减系数b增加,不稳定区域向下偏移,且初始流速u0增大,偏移现象越明显;同时随着时间τ的推移和衰减系数b的增加,流速衰减越快,不稳定区域闭合加快,当管道内流速衰减至0时,水锤过程结束,管道不稳定区域消失。

Abstract

As an internal excitation form, oscillation attenuation flow significantly affects the stability and resonance characteristics of fluid-conveying pipeline. Here, based on the differential equation of transverse vibration of pipeline conveying fluid, the exponential attenuation function was introduced to simulate oscillation attenuation characteristics of flow velocity when water hammer happening, and the expression of dynamic instability region of pipeline conveying fluid under the action of internally excited oscillation attenuation flow was derived. Under the condition of unattenuated periodic pulsating flow excitation, the unsteady regions of two kinds of pipelines with different supports were calculated, they were in good agreement with the previous numerical results published. Meanwhile, compared with the velocity time history calculated using viscoelastic pipe model under water hammer, it was shown that the proposed velocity expression can better reflect bidirectional attenuation characteristics of flow in the pipeline under water hammer excitation. Furthermore, the influence of attenuation characteristic parameters on the unstable region of simply supported pipeline was analyzed. The results showed that the influence of the internally excited oscillation attenuation flow on the transverse vibration of the pipeline can’t be ignored; when the flow velocity attenuation coefficient b increases, the unstable region moves downward, and when the initial flow velocity u0 increases, shifting phenomenon becomes more obvious; at the same time, with passage of time and increase in attenuation coefficient b, the faster the flow velocity attenuation and the faster the closure of unstable region; when flow velocity attenuation reaches 0, water hammer process is over, unstable area of pipeline disappears.

关键词

振荡衰减流 / 内激励 / 输流管道 / 横向振动 / 动力不稳定区域

Key words

oscillatory attenuation flow / internal excitation / fluid-conveying pipeline / transverse vibration / dynamic instability region

引用本文

导出引用
张挺1,林震寰1,林通1,张恒2. 内激励型振荡衰减流作用下输流管道动力不稳定分析[J]. 振动与冲击, 2021, 40(3): 284-290
ZHANG Ting1, LIN Zhenhuan1, LIN Tong1, ZHANG Heng2. Dynamic instability analysis of pipeline conveying fluid under action of internally excited oscillation attenuation flow[J]. Journal of Vibration and Shock, 2021, 40(3): 284-290

参考文献

[1] Chen S. Dynamic stability of tube conveying fluid [J]. Journal of the Engineering Mechanics Division, 1971, 97(5): 1469-1485.
[2] Paidoussis M P, Sundararajan C. Parametric and combination resonances of a pipe conveying pulsating fluid [J]. Journal of Applied Mechanics, 1975, 42(4): 780-784.
[3] Paidoussis M P, Issid N T. Dynamic stability of pipes conveying fluid [J]. Journal of Sound & Vibration, 1974, 33(3): 267-294.
[4] 王杰方, 安海, 安伟光. 超空泡运动体圆柱薄壳的非线性动力屈曲分析[J]. 力学学报, 2016, 48(1):181-191.
Wang Jiefang, An Hai, An Weiguang. The nonlinear dynamic buckling analysis of a thin-walled cylindrical shell of supercavitating vehicles [J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 181-191. (in Chinese)
[5] Arani A G, Kolahchi R, Mosayyebi M, et al. Pulsating fluid induced dynamic instability of visco-double-walled carbon nano-tubes based on sinusoidal strain gradient theory using DQM and Bolotin method [J]. International Journal of Mechanics & Materials in Design, 2016, 12(1): 17-38.
[6] Gorman D G, Reese J M, Zhang Y L. z [J]. Journal of Sound and Vibration, 2000, 230(2): 379-392.
[7] Azrar A, Azrar L, Aljinaidi A A. Numerical modeling of dynamic and parametric instabilities of single-walled carbon nanotubes conveying pulsating and viscous fluid[J]. Composite Structures, 2015, 125:127-143.
[8] Seo Y S, Jeong W B, Jeong S H, et al. Finite element analysis of forced vibration for a pipe conveying harmonically pulsating fluid [J]. JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 2005, 48(4): 688-694.
[9] Wang L, Ni Q. On vibration and instability of carbon nanotubes conveying fluid[J]. Computational Materials Science, 2008, 43(2):0-402.
[10] Wang L, Ni Q, Li M, et al. The thermal effect on vibration and instability of carbon nanotubes conveying fluid[J]. Physica E, 2008, 40(10):3179-3182.
[11] 税朗泉, 刘永寿, 顾致平, 等. 轴向周期激励下含脉动流体的简支管道横向振动的稳定性分析[J]. 振动与冲击, 2012, 31(7): 133-136.
Shui Langquan, Liu Yongshou, Gu Zhiping, et al. Stability of transverse vibration for a pinned-pinned pipe conveying pulsing fluid under axial periodic excitation [J]. Journal of Vibration and Shock, 2012, 31(7): 133-136. (in Chinese)
[12] Panda L N, Kar R C. Nonlinear dynamics of a pipe conveying pulsating fluid with combination, principal parametric and internal resonances [J]. Journal of Sound & Vibration, 2008, 309(3–5):375-406.
[13] 张计光, 陈立群, 钱跃竑. Winkler地基上黏弹性输流管的参数共振稳定性[J]. 振动与冲击, 2013, 32(13): 137-141.
Zhang Jiguang, Chen Liqun, Qian Yuehong. Dynamic stability of parametric resonance for a viscoelastic pipe conveying pulsating fluid on Winkler elastic foundation [J]. Journal of Vibration and Shock, 2013, 32(13): 137-141. (in Chinese)
[14] Bergant A, Tijsseling A S, Vitkovsky J P, et al. Parameters affecting water-hammer wave attenuation, shape and timing—part2: Case studies [J]. Journal of Hydraulic Research, 2008. 46(3): 382-391.
[15] Keramat A, Tijsseling A S, Hou Q, et al. Fluid–structure interaction with pipe-wall viscoelasticity during water hammer [J]. Journal of Fluids & Structures, 2012, 28(1): 434-455.
[16] Wahba E M. On the two-dimensional characteristics of laminar fluid transients in viscoelastic pipes [J]. Journal of Fluids & Structures, 2017, 68: 113-124.
[17] Ghodhbani A, Taïeb E H. A four-equation friction model for water hammer calculation in quasi-rigid pipelines [J]. International Journal of Pressure Vessels & Piping, 2017, 151: 54-62
[18] 张挺, 吕勇臻, 杨志强, 等. 水锤激励下粘弹性输流直管轴向振动响应特性[J]. 振动工程学报, 2017, 30(2): 241-248.
Zhang Ting, Lü Yongzhen, Yang Zhiqiang, et al. Axial vibration response of the viscoelastic fluid-conveying straight pipe induced by water hammer [J]. Journal of Vibration Engineering, 2017, 30(2): 241-248. (in Chinese)
[19] 陆念力, 刘士明, 孟丽霞. 起重机箱形伸缩臂的动力稳定性分析[J]. 工程力学, 2013, 30(3): 377-382.
Lu Nianli, Liu Shiming, Meng Lixia. The dynamic stability analysis of crane’s telescopic boom [J]. Engineering Mechanics, 2013, 30(3): 377-382. (in Chinese)
[20] Kolahchi R, Moniri A M. Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes[J]. Applied Mathematics & Mechanics, 2016, 37(2): 265-274.

PDF(795 KB)

Accesses

Citation

Detail

段落导航
相关文章

/