多源不确定性条件下气动弹性系统颤振可靠性分析方法

郑宇宁

振动与冲击 ›› 2021, Vol. 40 ›› Issue (3) : 54-62.

PDF(1012 KB)
PDF(1012 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (3) : 54-62.
论文

多源不确定性条件下气动弹性系统颤振可靠性分析方法

  • 郑宇宁
作者信息 +

Flutter reliability analysis method of aeroelastic system under multi-source uncertainty

  • ZHENG Yuning
Author information +
文章历史 +

摘要

传统的气动弹性系统颤振分析模型大多是在确定性参数条件下建立的,当系统中存在不确定因素时,按确定性方法设计的气动弹性系统存在颤振失效风险。本文以概率和非概率区间模型为基础,建立了单源不确定性条件下颤振可靠性分析模型。在此基础上,针对含随机和区间多源不确定参数的气动弹性系统颤振可靠性分析问题,提出了一种基于分步求解策略的新型混合可靠性分析与度量方法,获取了多源不确定性条件下气动弹性系统的颤振可靠度,实现了对多源不确定性条件下颤振可靠性的有效评估。数值算例表明,本文方法与蒙特卡洛模拟方法相吻合,并且具有显著的计算效率优势。

Abstract

Traditional flutter analysis models of aeroelastic system are mostly established under the condition of deterministic parameters. When there are uncertainties in the system, the aeroelastic system designed with the deterministic method has a risk of flutter failure. Here, based on probabilistic and non-probabilistic interval models, a flutter reliability analysis model under the condition of single-source uncertainty was established. On this basis, a new hybrid reliability analysis and measurement method based on the step-by-step solving strategy was proposed for flutter reliability analysis of aeroelastic systems with random and interval multi-source uncertain parameters. The flutter reliability of aeroelastic system under the condition of multi-source uncertainty was obtained, and the effective evaluation of flutter reliability under the condition of multi-source uncertainty was realized. Numerical examples showed that the results obtained using the proposed method agree well with those obtained using Monte Carlo simulation method; the proposed method has a significant advantage of computational efficiency.

关键词

气动弹性系统 / 颤振 / 多源不确定性 / 可靠性 / 区间

Key words

aeroelastic system / flutter / multi-source uncertainty / reliability / interval

引用本文

导出引用
郑宇宁. 多源不确定性条件下气动弹性系统颤振可靠性分析方法[J]. 振动与冲击, 2021, 40(3): 54-62
ZHENG Yuning. Flutter reliability analysis method of aeroelastic system under multi-source uncertainty[J]. Journal of Vibration and Shock, 2021, 40(3): 54-62

参考文献

[1] Liu Y W, Chen Q L, Zheng D Q. Flutter reliability analysis of wing structure[J]. Acta Aeronautica et Astronautica Sinica, 1997, 19(4): 503-505.
[2] Pourzeynail S, Datta T K. Reliability analysis of suspension bridges against flutter[J]. Journal of Sound and Vibration, 2002, 254(1): 143-162.
[3] Ge Y J, Zhou Z, Xiang H F. Reliability assessment of bridge flutter based on modified FOSM method[J]. Structural Engineers, 2006, 22(3): 46-51.
[4] 周峥, 葛耀君, 杜柏松. 桥梁颤振概率性评价的随机有限元法[J]. 工程力学, 2007, 24(2): 98-104.
Zhou Z, Ge Y J, Du B S. Probabilistic assessment of bridge flutter based on stochastic finite element method[J]. Engineering Mechanics, 2007, 24(2): 98-104.
[5] Song S F, Lu Z Z, Zhang W W, et al. Relaibilty and sensitivity analysis of transonic flutter using improved line sampling technique[J]. Chinese Journal of Aeronautics, 2009, 22(6): 513-519.
[6] 李毅, 杨智春. 基于参数不确定性的机翼颤振风险评定[J]. 西北工业大学学报, 2010, 28(3): 458-463.
Li Y, Yang Z C. Exploring Wing Flutter Risk Assessment with Parametric Uncertainty[J]. Journal of Northwestern Polytechnical University, 2010, 28(3): 458-463.
[7] Li Y, Yang Z C. Uncertainty quantification in flutter analysis for an airfoil with preloaded free play[J]. Journal of Aircraft, 2010, 47(4): 1454-1457.
[8] 戴玉婷, 吴志刚, 杨超. 不确定性颤振风险定量分析[J]. 航空学报, 2010, 31(9): 1788-1795.
Dai Y T, Wu Z G, Yang C. Quantification analysis of uncertain flutter risks[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(9): 1788-1795.
[9] Canor T, Caracoglia L, Denoël V. Application of random eigenvalue analysis to assess bridge flutter probability[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 140: 79-86.
[10] Pourazarm P, Caracoglia L, Lackner M., et al. Perturbation methods for the reliability analysis of wind-turbine blade failure due to flutter[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 156: 159-171.
[11] Wu S, Livne E. Alternative aerodynamic uncertainty modeling approaches for flutter reliability analysis[J]. AIAA Journal, 2017, 55(8): 2808-2823.
[12] Ben-Haim Y. A non-probabilistic concept of reliability[J]. Structural safety, 1994, 14: 227-245.
[13] 郭书祥, 吕震宙. 结构体系的非概率可靠性分析方法[J]. 计算力学学报, 2002, 19: 332-335.
Guo S X, Lv Z Z. A procedure of the analysis of non-probabilistic reliability of structural systems[J]. Chinese Journal of Computational Mechanics, 2002, 19: 332-335.
[14] 曹鸿钧, 段宝岩. 基于非概率可靠性的结构优化设计研究[J]. 应用力学学报, 2005, 22: 381-385.
Cao H J, Duan B Y. Approach to optimization of uncertain structures based on non-probabilistic reliability. Chinese Journal of Applied Mechanics, 2005, 22: 381-385.
[15] Wang X J, Qiu Z P, Elishakoff I. Non-probabilistic set-theoretic model for structural safety measure[J]. Acta Mechanica, 2008, 198: 51-64.
[16] Jiang C, Han X, Lu G, et al. Correlation analysis of non-probabilistic convex model and corresponding structural reliability technique[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200: 2528-2546.
[17] Jiang C, Bi R, Lu G, et al. Structural reliability analysis using non-probabilistic convex model[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 254: 83-98.
[18] 何新党. 多源不确定性结构可靠性分析及优化设计[D]. 西安: 西北工业大学, 2014.
He X D. Research on reliability analysis and optimization design for structures with multi-source uncertainties[D]. Xi’an: Northwestern Polytechnical University, 2014.
[19] Wang L, Wang X J, Li Y L, et al. Structural time-dependent reliability assessment of the vibration active control system with unknown-but-bounded uncertainties[J]. Structural Control and Health Monitoring, 2017, 24(10): e1965.
[20] Li Y L, Wang X J, Wang L, et al. Non-probabilistic stability reliability measure for active vibration control system with interval parameters[J]. Journal of Sound and Vibration, 2017, 387: 1-15.
[21] Wang X J, Qiu Z P. Nonprobabilistic interval reliability analysis of wing flutter[J]. AIAA Journal, 2012, 47(3): 743-748.
[22] 蒋国庆. 基于非概率可靠性理论的壁板颤振抑制研究[D]. 沈阳: 沈阳航空航天大学, 2014.
Jiang G Q. Research on suppression of the panel flutter based on probabilistic reliability theory[D]. Shenyang: Shenyang Aerospace University, 2014.
[23] Wright J R, Cooper J E. Introduction to aircraft aeroelasticity and loads[M]. Second Edition, Wiley, 2015.
[24] Zheng Y N, Qiu Z P. An efficient method for flutter stability analysis of aeroelastic systems considering uncertainties in aerodynamic and structural parameters[J]. Mechanical Systems and Signal Processing, 2019, 126: 407-426.
[25] Zheng Y N, Qiu Z P. Non-probabilistic stability reliability analysis of composite laminated panels in supersonic flow with uncertain-but-bounded parameters[C]. AIAA Non-Deterministic Approaches Conference, Kissimmee, USA, 2018.
[26] Li J, Chen J B. robability density evolution method for dynamic response analysis of structures with uncertain parameters[J]. Computational Mechanics, 2004, 34: 400-409
[27] Li J, Chen J B. Dynamic response and reliability analysis of structures exhibiting nonlinearity[J]. International Journal for Numerical Methods in Engineering, 2005, 62(20): 289-315.
[28] Li J, Chen J B. The principle of preservation of probability and the generalized density evolution equation. Structural Safety, 2008, 30(1): 65-77.
[29] 刘令波. 基于概率密度演化的非线性随机结构可靠度分析[D]. 大连: 大连理工大学, 2013.
Liu L B. Reliability analysis of nonlinear stochastic structures based on probability density evolution[D]. Dalian: Dalian University of Technology, 2013.
[30] 赵海. 超声速/高超声速流中二元机翼的颤振与极限环[D]. 哈尔滨: 哈尔滨工业大学, 2009.
Zhai H. Aerodynamic flutter and limited cycle of a 2-D wing in the hypersonic/supersonic flow field[D]. Harbin: Harbin Institute of Technology, 2009.

PDF(1012 KB)

Accesses

Citation

Detail

段落导航
相关文章

/