基于支持向量机的现地地震预警地震动峰值预测

余聪1,2,宋晋东1,2,李山有1,2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (3) : 63-72.

PDF(4145 KB)
PDF(4145 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (3) : 63-72.
论文

基于支持向量机的现地地震预警地震动峰值预测

  • 余聪1,2,宋晋东1,2,李山有1,2
作者信息 +

Prediction of peak ground motion for on-site earthquake early warning based on SVM

  • YU Cong1,2, SONG Jindong1,2, LI Shanyou1,2
Author information +
文章历史 +

摘要

以0.1-10Hz带通滤波后三分向矢量合成地震动峰值PGA与PGV为预测目标参数,利用日本K-net强震台网P波触发后3秒数据,基于人工智能中的经典机器学习方法-支持向量机,选取加速度幅值Pa、速度幅值Pv、位移幅值Pd、傅立叶谱幅值AMmax、速度平方积分IV2、破坏烈度DI、累积绝对速度CAV、阿里亚斯烈度Ia这8种特征参数构建地震动峰值预测模型。结果表明,对比常规的Pd预测模型,本文建立的支持向量机PGA与PGV预测模型,在测试数据集及随机选取2次震例数据集上计算得到的预测值与实测值更趋近1:1比例关系,且PGA与PGV的预测值误差不受震中距变化的影响,PGA与PGV预测时的低值高估与高值低估现象也得到了改善。本文构建的支持向量机预测模型可用于现地地震预警地震动峰值、即仪器地震烈度的预测。

Abstract

Here, taking ground motion peak values PGA and PGV synthesized by 3-D vectors after 0.1-10 Hz band-pass filtering as the prediction target parameters, using the data of 3 seconds after triggering P wave of Japan K-net strong earthquake network, based on the classic machine learning method in artificial intelligence-support vector machine (SVM), a ground motion peak value prediction model was constructed by selecting 8 feature parameters including acceleration amplitude Pa, velocity amplitude Pv, displacement amplitude Pd, Fourier spectrum amplitude AMmax, velocity square integral IV2, destruction intensity DI, cumulative absolute velocity CAV and Arias intensity Ia. Results showed that compared with the conventional Pd prediction model, using the constructed SVM prediction model for PGA and PGV, the predicted values calculated with testing data set and data sets of 2 earthquake cases selected randomly and the actual measured values are closer to a 1∶1 relationship, the errors for the predicted values of PGA and PGV are not affected by the change in epicenter distance; phenomena of under-estimation and over-estimation of PGA and PGV during prediction are improved; the constructed SVM prediction model can be used to predict ground motion peak values for in situ earthquake warning, i.e., to predict the instrument seismic intensity.

关键词

地震预警 / 现地 / P波 / 地震动峰值 / 支持向量机

Key words

earthquake early warning / on-site / P wave / ground motion peak value / support vector machine (SVM)

引用本文

导出引用
余聪1,2,宋晋东1,2,李山有1,2. 基于支持向量机的现地地震预警地震动峰值预测[J]. 振动与冲击, 2021, 40(3): 63-72
YU Cong1,2, SONG Jindong1,2, LI Shanyou1,2. Prediction of peak ground motion for on-site earthquake early warning based on SVM[J]. Journal of Vibration and Shock, 2021, 40(3): 63-72

参考文献

[1] 宋晋东. 高速铁路运行控制用地震动参数及单台地震预警技术研究[D].哈尔滨:中国地震局工程力学研究,2013.
SONG Jin-dong. Research on Seismic Ground Motion Indices for Operation Control and Single Station Earthquake Early Warning Applied for High-speed Railway [D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2013.
[2] Espinosa-Aranda J M, Cuellar A, Garcia A, et al. Evolution of the Mexican Seismic Alert System (SASMEX) [J]. Seismological Research Letters, 2009, 80(5):694-706.
[3] Nakamura Y. On the Urgent Earthquake Detection and Alarm System (UrEDAS) [C]// Proceedings 9th World Conf. Earthquake Engineering, 2–9 August 1988, Tokyo–Kyoto, Japan, Railway Technical Research Institute, 1988, 7, 673–678.
[4] Odaka T. A New Method of Quickly Estimating Epicentral Distance and Magnitude from a Single Seismic Record [J]. Bulletin of the Seismological Society of America, 2003, 93(1):526-532.
[5] Horiuchi S, Negishi H, Abe K, et al. An automatic processing system for broadcasting system earthquake alarms [J]. Bulletin of the Seismological Society of America, 2005, 95(2):347–353.
[6] Allen R M, Kanamori H. The potential for earthquake early warning in southern California [J]. Translated World Seismology, 2003, 300(5620):789-788.
[7] Allen R M, Brown H, Hellweg M, et al. Real-time earthquake detection and hazard assessment by ElarmS across California [J]. Geophysical Research Letters, 2009, 36(5): L00B08.
[8] Allen R M, Gasparini P, Kamigaichi O, et al. The Status of Earthquake Early Warning around the World: An Introductory Overview [J]. Seismological Research Letters, 2009, 80(5):682-693.
[9] Böse M, Hauksson E, Solanki K, et al. Real‐time testing of the on‐site warning algorithm in southern California and its performance during the July 29 2008 Mw5.4 Chino Hills earthquake [J]. Geophysical Research Letters, 2009, 36(5):441-451.
[10] Zollo A, Iannaccone G, Lancieri M, et al. Earthquake early warning system in southern Italy: Methodologies and performance evaluation [J]. Geophysical Research Letters, 2009, 36(4): L00B07.
[11] Zollo A, Iannaccone G, Convertito V, et al. The earthquake early warning system in southern Italy [M]. Encyclopedia of Complexity and System Science, Vol. 5, Springer, New York, 2009, 2395–2421.
[12] Satriano C, Elia L, Martino C, et al. PRESTo, the earthquake early warning system for Southern Italy: Concepts, capabilities and future perspectives [J]. Soil Dynamics and Earthquake Engineering, 2011, 31(2):137-153.
[13] Peng H S, Wu Z L, Wu Y M, et al. Developing a prototype earthquake early warning system in the Beijing capital region [J]. Seismological research Letters, 2011, 82, 394–403. 
[14] Zhang H C,Jin X,Wei Y X,et al. An earthquake early warning system in Fujian, China [J]. Bulletin of the Seismological Society of America 2016, 106 ( 2) : 755-765.
[15] 马强.地震预警技术研究及应用[D].哈尔滨:中国地震局工程力学研究所, 2008.
MA Qiang. Study and Application on Earthquake Early Warning [D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2008.
[16] Kanamori H. Real-time seismology and earthquake damage mitigation [J]. Annual Review of Earth and Planetary Sciences 2005, 33(1):195-214.
[17] Wu Y M, Zhao L. Magnitude estimation using the first three seconds P-wave amplitude in earthquake early warning [J]. Geophysical Research Letters, 2006, 33(16): L16312.
[18] Zollo A, Lancieri M, Nielsen S. Earthquake magnitude estimation from peak amplitudes of very early seismic signals on strong motion records[J]. Geophysical Research Letters, 2006, 33(23): L23312.
[19] Zollo A, O Amoroso, M Lancieri, Wu Y M, et al. A threshold-based earthquake early warning using dense accelerometer networks [J]. Geophysical Journal International, 2010, 183(2):963-974.
[20] Nakamura Y. A New Concept for the Earthquake Vulnerability Estimation and its Application to the Early Warning System [M]//Early Warning Systems for Natural Disaster Reduction. Springer Berlin Heidelberg, 2003, 693-699.
[21] Festa G, Zollo A, Lancieri M. Earthquake magnitude estimation from early radiated energy[J]. Geophysical Research Letters, 2008, 35(22):113-130.
[22] Brondi P, Picozzi M, Emolo A, et al. Predicting the macroseismic intensity from early radiated P wave energy for on‐site earthquake early warning in Italy [J]. Journal of Geophysical Research: Solid Earth, 2015,120.
[23] Böse M, Heaton T, Hauksson E. Rapid Estimation of Earthquake Source and Ground-Motion Parameters for Earthquake Early Warning Using Data from a Single Three-Component Broadband or Strong-Motion Sensor [J]. Bulletin of the Seismological Society of America, 2012, 102 (2):738-750.
[24] 宋晋东, 教聪聪, 李山有, 等. 一种基于地震早期辐射P波能量的高速铁路Ⅰ级地震警报预测方法[J]. 振动与冲击, 2018, 37(19): 14-22. 
    SONG Jin-dong, JIAO Cong-cong, LI Shan-you, et al. A predicting method for magnitude 1 earthquake alarm of high-speed railways based on seismic early radiated P-wave energy [J]. Journal of vibration and shock, 2018, 37(19): 14-22.  [25] 马强, 金星, 李山有, 等. 用于地震预警的P波震相到时自动拾取[J]. 地球物理学报, 2013, 56(7):2313-2321.
    MA Qiang, JIN Xing, LI Shan-you, et al. Automatic P-arrival detection for earthquake early warning [J]. Chinses journal of geophysics, 2013, 56(7): 2313-2321.
[26] 马强,李水龙,李山有,等.不同地震动参数与地震烈度的相关性分析[J].地震工程与工程振动,2014,34(04):83-92.
    MA Qiang, LI Shui-long, LI Shan-you, et al. On the correlation of ground motion parameters with seismic intensity [J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(04):83-92.
[27] 中国地震局.仪器地震烈度计算(送审稿)[S].2017.
     China Earthquake Administration.Calculation Code for Instrumental Seismic Intensity[S].2017.
[28] Electric Power Research Institute. A Criterion for Determining Exceedance of the Operating Basis Earthquake [R] // EPRI Report 1988, NP-5930, 1-28.
[29] Arias A. A measure of earthquake intensity [M]. Hansen R J, ed. Seismic Design for Nuclear Power Plants, MIT Press, Cambridge, Massachusetts, 1970,438-483.
[30] 周志华.机器学习[M]. 北京:清华大学出版社,2016:121-139.
     ZHOU Zhi-hua. Machine learning [M]. Beijing: Tsinghua University Press, 2016:121-139.
[31] Murphy S, Nielsen S. Estimating Earthquake Magnitude with Early Arrivals: A Test Using Dynamic and Kinematic Models [J]. Bulletin of the Seismological Society of America, 2009, 99(1):1-23.

PDF(4145 KB)

470

Accesses

0

Citation

Detail

段落导航
相关文章

/