气泡辅助航行系统降低船模-碎冰相互碰撞的试验研究

倪宝玉1,钟凯1,张东江2,薛彦卓1

振动与冲击 ›› 2021, Vol. 40 ›› Issue (4) : 10-16.

PDF(1688 KB)
PDF(1688 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (4) : 10-16.
论文

气泡辅助航行系统降低船模-碎冰相互碰撞的试验研究

  • 倪宝玉1,钟凯1,张东江2,薛彦卓1
作者信息 +

An experimental study on the reduction of collision between a ship and crushing ice by using an air bubbling system

  • NI Baoyu1,ZHONG Kai1,ZHANG Dongjiang2,XUE Yanzhuo1
Author information +
文章历史 +

摘要

本文通过模型实验探究气泡辅助系统降低船舶与碎冰相互碰撞的机理,依托雪龙2号船模设计了气泡辅助航行系统,在哈尔滨工程大学室外冰水池内进行了模拟非冻结模型冰碎冰航道的船模拖航实验。通过机理实验,探究气泡辅助航行系统使用前后船模与浮冰相互作用模式的差异,同时根据船艏、船舯的浮冰清除效果,分析该系统对这两部分浮冰碰撞作用的减轻程度;随后改变实验参数,探究航速,喷气量以及浮冰密集度对该系统工作效果影响,进一步探究该气泡辅助系统工作机理。

Abstract

In this work, the mechanism of an air bubbling system to reduce the collision between ship and crushing ice was explored by using a model experiment.The air bubbling system was designed for the model of the “XUE LONG 2”, and the model experiment of simulating the crushing ice channel was conducted in the outdoor ice pool of Harbin Engineering University.Through the mechanism experiment, the difference of the interaction between the ship and the crushing ice was explored, before and after using the air bubbling system.Meanwhile, the impact of crushing ice on the bow as well as the midbody of the ship model was analyzed, according to the removal effect of the crushing ice away from the hull.On this basis, the effects of the speed, jet volume and ice concentration were investigated by changing the experimental parameters.

关键词

碎冰区航行 / 气泡辅助航行技术 / 清冰 / 船模实验 / 非冻结模型冰

Key words

ice-crashing area navigation / air bubbling assistant navigation technology / ice clearing / ship model test / non-frozen model ice

引用本文

导出引用
倪宝玉1,钟凯1,张东江2,薛彦卓1. 气泡辅助航行系统降低船模-碎冰相互碰撞的试验研究[J]. 振动与冲击, 2021, 40(4): 10-16
NI Baoyu1,ZHONG Kai1,ZHANG Dongjiang2,XUE Yanzhuo1. An experimental study on the reduction of collision between a ship and crushing ice by using an air bubbling system[J]. Journal of Vibration and Shock, 2021, 40(4): 10-16

参考文献

[1] 潘常虹,孙冬石.中俄共建“北极蓝色经济通道”的路径和策略[J].东北亚经济研究,2018,2(06):109-118.
PAN Changhong , SUN Dongshi. The Path and Strategy of China-Russia Building the "Arctic Blue Economic Corridor"[J]. Economic Research in Northeast Asia, 2018,2(06):109-118.
[2] Liu Z, Amdahl J, Løset S. Integrated numerical analysis of an ice-berg collision with a foreship structure. Marine Structures, 2011,24: 377-395.
[3] 黄焱,李伟,王迎晖,吴宝山.大型运输船极地浮冰区航行阻力的模型试验[J].中国造船,2016,57(03):26-35.
HUANG Yan, LI Wei, WANG Yinghui, WU Baoshan. Experimental study on the resistance of a transport ship navigating in broken ice[J]. Shipbuilding of China,2016,57(03):26-35.
[4] 李夏炎. 冰区航行船舶阻力性能研究[D].哈尔滨工程大学,2016.
LI Xiayan. Study on the resistance performance of ships sailing in ice zones [D]. Harbin Engineering University, 2016.
[5] 倪宝玉,胡冰,王伟彬,狄少丞,薛彦卓. 冰级船主机功率理论预报方法研究,舰船科学技术,2019,(已录用).
NI Baoyu, HU Bing, WANG Weibin, DI Shaocheng, XUE Yanzhuo. Study on the theory of forecasting power of ice-class ship host. Ship Science and Technology. (Accepted)
[6] 谢畅.碎冰条件下冰区船舶阻力性能试验研究[D].哈尔滨工程大学,2015.
XIE Chang. Study on Ship Resistance Performance in Crushing ice conditions[D]. Harbin Engineering University, 2015.
[7] 李紫麟,刘煜,孙珊珊,卢云亮,季顺迎.船舶在碎冰区航行的离散元模型及冰载荷分析[J].力学学报,2013,45(06):868-877.
LI Zilin, LIU Yu, SUN Shanshan, LU Yunliang, JI Shunying. Discrete meta-model and ice load analysis of ship navigation in the ice-crushing area [J]. Journal of Theoretical and Applied Mechanics, 2013,45(06):868-877.
[8] 闫孟娇,朱凌.浮冰碰撞载荷作用下船体板结构动力响应研究[J].武汉理工大学学报(交通科学与工程版),2017,41(02):268-272.
Yan Mengjiao, ZHU Ling. Study on the dynamic response of hull plate structure under the effect of floating ice collision load [J]. Journal of Wuhan University of Technology (Traffic Science and Engineering Edition), 2017,41(02):268-272.
[9] 胡以怀,李慧晶,何浩.国内外船舶气泡减阻技术的研究与应用[J].船舶与海洋工程,2017,33(06):1-6.
HU Yihuai, LI Huijing, HE Hao. Research and application of ship bubble drag reduction technology at home and abroad[J]. Naval Architecture and Ocean Engineering, 2017,33(06):1-6.
[10] McCormick M E, Bhattacharyya R. Drag reduction of a submersible hull by electrolysis [J]. Naval Engineers Journal, 2010, 85(2):11-16.
[11] 王丽艳,郝思文.气泡减阻技术研究进展[J].船海工程,2011,40(06):109-113.
WANG Liyan, HAO Siwen. On the Development of Bubble Drag Reduction Technique[J]. Ship & Ocean Engineering,2011,40(06):109-113.
[12] 沈权,赵炎平.破冰船技术及几种破冰方法[J].航海技术,2010(01):5-7.
SHEN Quan, ZHAO Yanping. Icebreaker technology and several ice-breaking methods[J]. Marine technology, 2010(01):5-7.
[13] 孙士明. 人工超空泡通气规律及形态研究[D].中国舰船研究院,2014.
SUN Shiming. Study on the law and morphology of artificial super-empty bubble ventilation [D]. China Ship Research Institute, 2014.
[14] 杨武刚,杨振才,温凯歌,李三财,张宇文.超空化航行体气体流量率的确定方法研究[J].力学学报,2012,44(04):694-700.
YANG Wugang, YANG Zhencai, WEN Kaige, LI Sancai, ZHANG Yuwen. Study on the determination of gas flow rate of ultra-empty navigational body [J]. Journal of Theoretical and Applied Mechanics, 2012,44(04):694-700.
[15] 金大桥. 水下动能射弹空泡形态及流体动力特性研究[D].哈尔滨工业大学,2010.
JIN Daqiao. Study on the formation of underwater kinetic energy projectile air bubbles and the characteristics of fluid dynamic steam [D]. Harbin Institute of Technology,2010.

PDF(1688 KB)

Accesses

Citation

Detail

段落导航
相关文章

/