考虑变量相关性的正交异性板细节疲劳可靠性评估

张海萍1,2,刘扬1,2,邓扬3,冯东明4

振动与冲击 ›› 2021, Vol. 40 ›› Issue (4) : 105-113.

PDF(2085 KB)
PDF(2085 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (4) : 105-113.
论文

考虑变量相关性的正交异性板细节疲劳可靠性评估

  • 张海萍1,2,刘扬1,2,邓扬3,冯东明4
作者信息 +

Fatigue reliability assessment of orthotropic steel deck weld details considering correlation between variables

  • ZHANG Haiping1,2,LIU Yang1,2,DENG Yang3,FENG Dongming4
Author information +
文章历史 +

摘要

传统的疲劳可靠性评估方法忽略了功能函数中变量的相关性,致使计算得到疲劳可靠度指标精度降低。针对这一问题,本文基于既有悬索桥主梁细节应变和环境温度大样本监测数据,讨论疲劳功能函数变量之间的相关性关系。提出基于Copula函数的相关性变量的联合分布模型,解决联合概率分布建模中多重积分求解困难的问题。研究表明,受环境温度的影响,靠近顶板焊接细节的日等效应力幅和应力循环次数存在较强的相关性,Gaussian Copula函数可作为相关性变量的最优连接函数,对于U肋-顶板细节,桥梁结构服役100年时,考虑与不考虑变量相关性的可靠度指标值分别5.3和6.9,两者之间相差约1.3倍。当年交通增长率分别等于3%和5%时,可靠度指标在服役年限为94.6年和67.1年时间到达目标可靠度指标。对于U肋-U肋对接细节,考虑和不考虑变量的相关性对可靠性指标影响相对顶板细节较小。

Abstract

The traditional fatigue reliability assessment method does not consider variables correlation.For this reason, the calculation value of fatigue reliability index has low accuracy.Concerning this issue, the orthotropic steel bridge deck (OSBD) detailed stress and ambient temperature data were collected.This study analyzed the correlation between the fatigue load effect variables.On this basis, the Copula function was introduced to establish a joint distribution model, and the issue of multiple integral calculations was solved.The research shows that the details which were close to the roof daily fatigue stress amplitude and numbers of variables have strong correlation.The Gaussian Copula is the optimal connection function for the correlation variables.For U-rib to deck details, after 100 years operation, the fatigue reliability indexes which considering and without considering the variables’ correlation are 5.3 and 6.9.The value of considering variables’ correlation is about 1.3 times to the value of without considering variables’ correlation.When the traffic load growth rate is 3% and 5%, the reliability indexes are reach the target value in 94.6 years and 67.1 years.For U-rib to U-rib details, there have a few influences to consider variables’ correlation.

关键词

桥梁工程 / 正交异性板 / 疲劳可靠性 / 相关性分析 / Copula函数。

Key words

bridge engineering / orthotropic steel deck / fatigue reliability / correlation analysis / copula function

引用本文

导出引用
张海萍1,2,刘扬1,2,邓扬3,冯东明4. 考虑变量相关性的正交异性板细节疲劳可靠性评估[J]. 振动与冲击, 2021, 40(4): 105-113
ZHANG Haiping1,2,LIU Yang1,2,DENG Yang3,FENG Dongming4. Fatigue reliability assessment of orthotropic steel deck weld details considering correlation between variables[J]. Journal of Vibration and Shock, 2021, 40(4): 105-113

参考文献

[ 1 ] 余腾, 胡伍生, 吴杰, 等. 基于小波阈值去噪与EMD分解方法提取润扬大桥振动信息[J]. 振动与冲击. 2019, 38(12)264-270.
    Yu peng, Hu wusheng, Wu jie, et al. Extraction of Runyang bridge vibration information based on a fusion method of wavelet threshold denoising and EMD decomposition. Journal of Vibration and Shock, 2019, 38(12)264-270.
[ 2 ] 陈永高, 钟振宇. 基于改进EEMD算法的桥梁结构响应信号模态分解研究[J]. 振动与冲击, 2019, 38(10):28-35.
   Chen yonggao, Zhong zhenyu. Modal decomposition of response signals for a bridge structure based on the improved EEMD. Journal of Vibration and Shock. 2019, 38(10):28-35.
[ 3 ]祝志文, 黄炎, 李健朋, 等. 正交异性钢桥面板横隔板弧形切口疲劳评价的热点应力法[J]. 交通运输工程学报, 2018, 18(5):29-38.
   Zhu zhiwen, Huang yan, Li jianpeng,et al. Fatigue assessment of floor beam cutout in orthotropic steel bridge deck based on hot-spot stress method [J]. Journal of Traffic and Transportation Engineering 2018, 18(5):29-38
[ 4 ] 朱劲松, 郭耀华. 正交异性钢桥面板疲劳裂纹扩展机理及数值模拟研究[J]. 振动与冲击, 2014, 33(14):40-47.
   Zhu jingsong, Guo yaohua. Numerical simulation on fatigue crack growth of orthotropic steel highway bridge deck[J]. Journal of Vibration and Shock, 2014, 33(14):40-47.
[ 5 ] Liu M, Frangopol D M, Kwon K. Fatigue reliability assessment of retrofitted steel bridges integrating monitored data[J]. Structural Safety, 2010, 32(1): 77-89.
[ 6 ] Deng Y, Ding Y L, Li A Q, et al. Fatigue reliability assessment for bridge welded details using long-term monitoring data[J]. Science China Technological Sciences, 2011, 54(12): 3371-3381.
[ 7 ] AASHTO. Standard specifications for highway bridges[S]. Washington, DC: American Association of State Highway and Transportation Officials, 2002.
[ 8 ] BS5400, British Standards Institution.  Steel, concrete and composite bridges, part10: Code of practice for fatigue[S],London, 1980
[ 9 ] Liu Y, Zhang H, et al. Fatigue reliability assessment for orthotropic steel deck details under traffic flow and temperature loading[J]. Engineering Failure Analysis, 2016, 71:179-194.
[ 10 ] Tang X S, Li D Q, Zhou C B, et al. Copula-based approaches for evaluating slope reliability under incomplete probability information[J]. Structural Safety, 2015, 52:90-99.
[ 11 ] Tang X S, Li D Q, Zhou C B, et al. Copula-based approaches for evaluating slope reliability under incomplete probability information[J]. Structural Safety, 2015, 52:90-99.
[ 12 ] Karadeniz H. Uncertainty modeling in the fatigue reliability calculation of offshore structures[J]. Reliability Engineering & System Safety, 2001, 74(3):323-335.
[ 13 ]  刘扬, 鲁乃唯, 邓扬. 基于实测车流的钢桥面板
疲劳可靠度评估[J]. 中国公路学报, 2016, 29(5):58-66.
Liu yang,lu naiwei,Deng yang, Fatigue Reliability Assessment of Steel Bridge Decks Under Measured Traffic Flow[J] China Journal of Highway and Transport.2016, 29(5):58-66.
[ 14 ] 祝志文, 黄炎, 向泽,等. 货运繁重公路正交异
性板钢桥弧形切口的疲劳性能[J]. 中国公 路 学 报, 2017, 30(3):104-112.
Zhu zhiwen, Huang yan, Xiang zhe. Fatigue Performance of Floor beam Cutout Detail of Orthotropic Steel Bridge on Heavy Freight Transportation Highway [J]. China Journal of Highway and Transport. 2017, 30(3):104-112.
[ 15 ] Guo T , Frangopol D M , Chen Y . Fatigue reliability assessment of steel bridge details integrating weigh-in-motion data and probabilistic finite element analysis [J]. Computers & Structures, 2012, 112-113(4):245-257.
[ 16 ] Sklar M. Fonctions de répartition à n dimensions et leurs marges[M]. Paris: Publications de l'Institut de Statistique de l'Uni- versité de Paris, 1959: 229-231.
[ 17 ]  Nelsen R B. An Introduction to Copulas [M]. 2006.
[ 18 ] Fengler M R, Okhrin O. Managing risk with a realized Copula parameter [J]. Computational Statistics & Data Analysis, 2016, 100(1):131-152.
[ 19 ] Akaike, Hirotugu. A new look at the statistical model identification[J]. Automatic Control IEEE Transactions on, 1974, 19(6):716-723.
[ 20 ] Attema T, Acharige A K, Moralesnápoles O, et al. Maintenance decision model for steel bridges: a case in the Netherlands[J]. Structure & Infrastructure Engineering, 2017.
[ 21 ] 周文晖, 李青, 周兆经. 采用小波多分辨率信号
分解的电能质量检测[J]. 电工技术学 报, 2001, 16(6):81-84.
Zhou wenhui,Li qing, zhou zhao jing.Power Quality Detection Using Wavelet-Multiresolution Signal Decomposition[J]. TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY, 2001, 16(6):81-84.

PDF(2085 KB)

Accesses

Citation

Detail

段落导航
相关文章

/