基于检测指数判决的子空间方位估计方法

杨丽,沈统,秦洁

振动与冲击 ›› 2021, Vol. 40 ›› Issue (4) : 114-119.

PDF(1282 KB)
PDF(1282 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (4) : 114-119.
论文

基于检测指数判决的子空间方位估计方法

  • 杨丽,沈统,秦洁
作者信息 +

A subspace bearing estimation method based on check indices judgment

  • YANG Li,SHEN Tong,QIN Jie
Author information +
文章历史 +

摘要

针对子空间高分辨方位估计方法稳健性差的问题,本文根据协方差矩阵稳定估计所需累积次数和各子空间强度谱检测指数差异性,提出一种基于检测指数判决的子空间方位估计方法。该方法首先将协方差矩阵频域求取过程转换为经相参补偿的时域求取,降低空间数据稳定性对协方差矩阵估计的影响;然后依据各子空间强度谱检测指数差异,提取各子空间强度谱判决统计量;最后根据判决统计量实现对目标子空间判决,降低空间背景噪声对最终合成空间强度谱影响。数值仿真及实测数据处理结果表明,相比现有子空间高分辨方位估计方法,本文方法能够有效降低了空间非稳定数据对协方差矩阵估计产生的影响;同时通过对各子空间判决处理,进一步降低了对最低信噪比的需求。

Abstract

For the instability problem of high resolution bearing estimation based on subspace, according to the accumulated number of stable estimating covariance matrix and the check indices difference of each subspace, a subspace bearing estimation method based on check indices judgment was proposed.Firstly, covariance matrix was obtained after phase compensation in time domain, the stability impact of space data on the subspace decomposition method was reduced.Then, according to the spatial spectrum check indices difference of each subspace, the judgment statistics was obtained.Lastly, the impact of background noise on final synthetic spatial spectrum was reduced via judge statistics.The results of numerical simulation and measured data show that: compared to the high resolution bearing estimation method, this method can statistically reduce the impact of space unsteady data on covariance matrix estimation, and reduce the demand of subspace decomposition method for minimum input signal-to-noise ratio by the processing of statistical judgment.

关键词

方位估计 / 协方差矩阵 / 检测指数 / 判决统计量

Key words

bearing estimation / covariance matrix / check indices / judgment statistics

引用本文

导出引用
杨丽,沈统,秦洁. 基于检测指数判决的子空间方位估计方法[J]. 振动与冲击, 2021, 40(4): 114-119
YANG Li,SHEN Tong,QIN Jie. A subspace bearing estimation method based on check indices judgment[J]. Journal of Vibration and Shock, 2021, 40(4): 114-119

参考文献

[1]. 安妍妍,李赢,时胜国,等. 声矢量圆阵宽带相干信号的方位估计[J]. 南京大学学报(自然科学),2017,53(4):621-628.
AN Yanyanl, LI Ying,Shi Shengguo,et al. The direction-of-arrival estimation for wideband coherent sources using the circular acoustic vector sensor array[J]. Journal of Nanjing University(Natural Science),2017,53(4): 621-628. (in Chinese)
[2]. IOANNIDES P, BALANIS C A. Uniform circular and rectangular arrays for adaptive beamforming applications[J]. IEEE Antennas and Wireless Propagation Letters, 2015,4: 351-354.
[3]. JIANG Z J, ZHAO S M, CHEN Y Y,et al. Beamforming optimization for time-modulated circular-aperture grid Array with DE algorithm[J]. IEEE Antennas and Wireless Propagation Letters, 2018,17(12): 2434-2437.
[4]. YAN S F. Optimal design of modal beamformers for circular arrays[J]. The Journal of the A coustical Society of America , 2015,138(4):2140-2151.
[5]. WANG Y, YANG Y X, MA Y L, et al. Broadband pattern synthesis for circular sensor arrays[J]. The Journal of the Acoustical Society of America Express Letters, 2014,136(2):EL153-EL158.
[6]. JACKSON B R, RAJAN S, LIAO B J, et al. Direction of arrival estimation using directive antennas in uniform circular arrays[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(2): 736-747.
[7]. WONG K T, MORRIS Z N, KITAVI D M,et al. A uniform circular array of isotropic sensors that stochastically dislocate in three dimensions—The hybrid Cramér-Rao bound of direction-of-arrival estimation[J]. The Journal of the A coustical Society of America , 2019,146(1): 150-163.
[8]. HAN Z R, WU M, ZHU Q X, et al. Three-dimensional wave-domain acoustic contrast control using a circular loudspeaker array[J]. The Journal of the Acoustical Society of America Express Letters, 2019,145(6):EL488-EL493.
[9]. JEON W, KIM J H, CHUNG S Y. Effect of mutual coupling on uniform circular arrays with vector antenna elements[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1703-1706.
[10]. SUN H M, YANG L, WEI L X. The ship target detection with improved orthogonal vector spectral estimation based on signal-subspace[J]. Radar Science and Technology, 2016, 19(4):321-326
[11]. 石要武, 陈淼, 单泽涛, 等. 基于特征空间 MUSIC 算法的相干信号波达方向空间平滑估计[J]. 吉林大学学报(工学版), 2017, 47(01): 268-273.
SHI Yaowu, CHEN Miao, SHAN Zetao, et al. Spatial smoothing technique for coherent signal DOA estimation based on eigen space MUSIC algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2017,47(01): 268-273. (in Chinese)
[12]. 高杨,李东生. 基于改良MUSIC和ALD-LCMV的自适应波束形成算法[J]. 探测与控制学报, 2015,37(3):24-29.
GAO Yang, LI Dongsheng. Adaptive beamforming algorithm based on modified MUSIC and ADL-LCMV[J]. Journal of Detection&Control, 2015,37(3):24-29.
[13]. ZHANG C D, LI G, LI Y C. Subspace fitting via sparse representation  of signal covariance for  DOA estimation[C]. IEEE International Conference on Acoustics, 2016 , 3251-3255.
[14]. 周 浩,蒋兴舟,袁志勇. 基于波束域MUSIC方法的高分辨方位估计[J]. 海军工程大学学报,2007,19(2):72-75.
ZHOU Hao, JIANG Xingzhou, YUAN Zhi yong. Study of the high resolution DOA estimation technology based on the beam space MUSIC algorithm[J]. Journal of Naval University of Engineering,2007,19(2):72-75.
[15]. 李帅, 陈辉, 张佳佳. 基于特征矢量重构的均匀圆阵解相干算法[J]. 空军预警学院学报, 2016, 30(03): 157-161.
LI Shuai, CHEN Hui and ZHANG Jiajia. Decorrelation algorithm of uniform circular array based on eigenvector reconstruction[J]. Journal of Air Force Early Warning Academy, 2016, 30(03): 157-161.(in Chinese)
[16]. 朱国辉,汪洋,米胜男. 加权最小二乘法和MUSIC法联合测向技术研究[J]. 雷达科学与技术,2019,17(3): 319-323.
ZHU Guohui, WAND Yang, MI Shengnan. Research on direction finding technique based on the combination of weighted least squares method and MUSIC algorithm[J]. Radar Science and Technology,2019,17(3):319-323. (in Chinese)
[17]. 邱岚.基于两次傅里叶变换的时域MUSIC波达方向估计[J].电讯技术,2018,58(10):1206-1211.
QIU Lan.Time-domain MUSIC for DOA estimation based on twice Fourier transform[J].Telecommunication Engineering,2018,58(10):1206-1211.(in Chinese)
[18]. YANG T C. Deconvolved conventional beamforming for a horizontal line array[J]. IEEE Journal of Oceanic Engineering, 2017, 34(3): 281-290.
[19]. SONG H C, KUPEMZAN W A, HODGKISS W S, et al. Robustness of null broadening against source motion [C]. Sensor Array and Multichannel Signal Processing Workshop Proceedings, Rosslyn, VA , USA., 2002,470-474.
[20]. 于德介,成琼,程军圣.基于复解析小波变换的瞬时频率分析方法[J].振动与冲击, 2004, 23(1):108-111.
YU Dejie, CHENG Qiong, CHENG Junsheng. Transient frequency analysis based on complex analytical wavelet transform and its application to fault diagnosis gear drive[J]. Journal of Vibration and Shock, 2004, 23(1):108-111.
[21]. 李 峥, 李 宇,黄 勇,等. 水下目标自主连续跟踪与定位算法研究[J]. 仪器仪表学报,2012,33(3):520-528.
LI Zheng,LI Yu,HUANG Yong,et al. Study of automatic continuous tracking and location algorithm for underwater target[J]. Chinese Journal of Scientific Instrument, 2012, 33(3):520-528. (in Chinese)
[22]. 陈建军,郑恩明,陈新华,基于子空间空间谱极值起伏特性加权的未知目标检测方法[J].振动与冲击,2018, 37(18):209-215.
CHEN Jianjun, ZHENG Enming, CHEN Xinhua. The detection method based on the extremum fluctuation feature of the subspace spatial spectrum for unknown target[J]. Journal of Vibration and Shock,2018,37(18):209-215.

PDF(1282 KB)

314

Accesses

0

Citation

Detail

段落导航
相关文章

/