大功率夹心式压电换能器结构参数计算分析及设计

王晨青,马建敏

振动与冲击 ›› 2021, Vol. 40 ›› Issue (4) : 130-137.

PDF(1823 KB)
PDF(1823 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (4) : 130-137.
论文

大功率夹心式压电换能器结构参数计算分析及设计

  • 王晨青,马建敏
作者信息 +

Design and structural parameters calculation analysis of a high power sandwich piezoelectric transducer

  • WANG Chenqing,MA Jianmin
Author information +
文章历史 +

摘要

基于一维纵振理论和机电等效原理,得到了单匹配层夹心式压电换能器辐射声压级的计算公式,通过该公式对换能器结构参数对其谐振频率和辐射声压级(sound pressure level,SPL)的影响进行了计算分析。计算结果表明:换能器径向尺寸对谐振频率的影响不大,但前盖板径向尺寸的增大会提高辐射声压级;纵向尺寸的增大会使换能器系统谐振频率降低,但增加前盖板厚度,或增大前后盖板厚度比,有利于辐射声压级的提高;增加压电晶片的片数、厚度和面积都可使换能器辐射声压级提高;换能器发射端增加匹配层能有效提高辐射声压级,匹配层的厚度和密度对声压级幅值和带宽有影响。依据计算结果,进行了给定指标要求的换能器的设计计算。

Abstract

This research focuses on the elastic wave transmission characteristics in an orthotropic plate and isotropic beam coupling system.Based on the dynamic analysis of bending wave propagation, we deduced the power flow transmission coefficient (PTC) formulation between the subsystems and the coupling loss factor (CLF) expression at the coupling boundary.The effects of internal loss factor, frequency and direction angle α on the transmission coefficient were calculated and analyzed.The correctness of the coupled model was verified by comparison with the finite element results.Finally, the coupling structure of the isotropic plate and the beam was compared.Simulation results show that when the bending wave is incident, the direction angle α has significant influence on the transmission coefficient.When the direction angle α is 90°, the transmission coefficient is the smallest.At the same time, the internal loss factor of the beam has significant influence on the transmission coefficient.As the internal loss factor increases, the transmission coefficient also increases.

关键词

夹心式换能器 / 机电等效 / 结构参数 / 匹配层 / 辐射声压级(SPL)

Key words

orthotropic plate / plate-beam coupling system / power flow transmission coefficient(PTC) / direction angle

引用本文

导出引用
王晨青,马建敏. 大功率夹心式压电换能器结构参数计算分析及设计[J]. 振动与冲击, 2021, 40(4): 130-137
WANG Chenqing,MA Jianmin. Design and structural parameters calculation analysis of a high power sandwich piezoelectric transducer[J]. Journal of Vibration and Shock, 2021, 40(4): 130-137

参考文献

[1] 马建敏. 一种多目标定位的声波发射装置[P]. 中国专利:CN105891808A,2016-08-24.
MA Jian-min. A multi-target positioning acoustic emission device [P]. Chinese patent: CN105891808A, 2016-08-24.(in Chinese)
[2] 桑永杰. 大尺寸压电超声换能器的特性研究及有限元仿真[D]. 陕西师范大学, 2007.
SANG Yong-jie. Study on the frequency characteristic of large dimension piezoelectric transducer [D]. Shaanxi Normal University, 2007.
[3] 秦  雷, 王丽坤, 唐会彦. 夹心式复合变幅杆换能器频率方程的推导[J]. 振动与冲击, 2011(07):195-198.
Qin Lin, Wang Li-kun, Tang Hui-yan. Frequency equation of a sandwich transducer with complex transformer [J]. Journal of vibration and shock, 2011(07):195-198.
[4] 陈  航, 张允孟, 李志舜. 具有阻抗匹配层的宽带纵向振动压电换能器设计[J]. 应用声学, 2001, 20(2):31-34.
CHEN Hang, ZHANG Yun-meng, LI Zhi-shun. Design of wide-band longitudinal mode Piezoeleetric transducers with impedance matching layers [J]. Journal of applied acoustics, 2001, 20(2):31-34.
[5] 滕  舵,陈  航,张允孟. 宽带纵振Tonpilz型水声换能器的优化设计[J].声学技术,2005(01):58-60 
Optimization design of broadband longitudinal Tonpilz underwater acoustic transducers.[J]. TechnicalA coustics,2005(01):58-60
[6] LIN Shu-yu, CAO Hui, QIAO Xiao-yang. Wireless Power Transmission Based on Sandwiched Composite Piezoelectric Transducers in Length Extensional Vibration[J]. IEEE Transactions on Power Electronics, 2016, 31(9):6134-6143.
[7] 林书玉. 双激励源压电陶瓷超声换能器的共振频率特性分析[J]. 电子学报, 2009, 37(11):2504-2509.
Lin Shu-yu. Analysis on the Resonance Frequency of Sandwich Ultrasonic Transducers with Two Sets of Piezoelectric Ceramic Elements[J]. Acta electronica sinica, 2009, 37(11):2504-2509.
[8] 付  勇, 陈  晔, 张伟民. 基于多物理场耦合的夹心式压电换能器优化设计[J]. 轻工机械, 2018, 36(05):6-13.
FU Yong, CHEN Ye, ZHANG Wei-min. Design and Optimization of Sandwich Piezoelectric Transducer Based on Comsol Multiphysics[J]. Light industry machinery, 2018, 36(05):6-13.
[9] D Chacón, G Rodríguez-Corral, L Gaete-Garretón, et al. A procedure for the efficient selection of piezoelectric ceramics constituting high-power ultrasonic transducers[J]. Ultrasonics, 2006, 44 Suppl 1(4):e517-21.
[10] 李  星,王丽坤,仲  超,张彦军.陶瓷体积分数对压电换能器性能影响[J].压电与声光,2019,41(03):400-404.
Li Xin, Wang Li-kun, Zhong Chao, Zhang Yan-jun. Effect of Ceramic Volume Fraction on the Performance of piezoeletric Transducers[J]. Piezoelectrics and acoustooptics,2019,41(03):400-404.
[11] 蒋锟林. 压电换能器匹配电路的设计[J]. 电声技术, 2012(09):32-35.
Jiang Kun-lin. Design of Piezoelectric Transducer Matching circuit [J]. Audio Engineering, 2012(09):32-35.
[12] 徐春龙, 胡卓蕊, 田华. 压电超声换能器电端匹配电路研究[J]. 纺织高校基础科学学报, 2007(02):90-94.
Xu Chun-long, Hu Zhuo-xin, Tian Hua. Study on matching circuit of piezoelectric ultrasonic transducer[J] BASIC SCIENCES JOURNAL OF TEXTILE UNIVERSITIES, 2007(02):90-94. (in Chinese)
[13] 李  珺, 张  峰, 贺西平, 朱奕蔓. 换能器匹配层参数的选定[J].陕西师范大学学报(自然科学版), 2009, 37(05): 38-41.
LI Jun, ZHANG Feng , HE Xi-ping, ZHU Yi-man. The parameters selection of matching layer of ultrasonic transducers[J]. Journal of Shaanxi Normal University (Natural Science Edition) , 2009, 37(05): 38-41.
[14] 赵顺刚. 气介超声换能器声匹配的应用[J]. 自动化仪表, 1995(12):18-21.
Zhao Shun-gang. Application of ultrasonic transducer acoustic matching in gas medium [J]. Automatic Instrument, 1995(12):18-21. .(in Chinese)
[15] 唐义政, 俞宏沛. 匹配层换能器的理论探讨[J]. 声学与电子工程, 1999(4).
TANG Yi-zheng, YU Hong-pei. Theoretical Discussion on Matching Layer Transducer[J]. Acoustics and Electronic Engineering, 1999(4).(in Chinese)
[16] 林金虎. 匹配层厚度振动换能器研究[J]. 声学技术, 2016, 29(05):551-555.
Lin Jin-hu. Study of thickness-vibrating transducers with matching layers[J]. Technical Acoustics, 2016, 29(05):551-555.
[17] 林书玉. 超声换能器的原理及设计[M]. 科学出版社, 2004.
LIN Shu-yu. Principle and design of ultrasonic transducer [M]. Science Press, 2004. (in Chinese)
[18] 梁延德,梅景放,何福本,周其波,魏剑宇.频率修正在超声变幅杆设计中的研究与应用[J].机械科学与技术,2015,34(02):212-215.
Liang Yan-de, Mei Jing-fang, He Fu-ben, Zhou Qi-bo, Wei Jian-yu. Study and Application of Frequency Correction in Ultrasonic Horn Design[J]. Mechanical Science and Technology for Aerospace Engineering,2015,34(02):212-215.

PDF(1823 KB)

1358

Accesses

0

Citation

Detail

段落导航
相关文章

/