基于故障可诊断性的齿轮箱传感器优化布置

彭珍瑞,刘臻

振动与冲击 ›› 2021, Vol. 40 ›› Issue (4) : 155-163.

PDF(1645 KB)
PDF(1645 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (4) : 155-163.
论文

基于故障可诊断性的齿轮箱传感器优化布置

  • 彭珍瑞,刘臻
作者信息 +

Optimal sensor placement of a gear box based on fault diagnosability

  • PENG Zhenrui,LIU Zhen
Author information +
文章历史 +

摘要

针对目前在优化传感器布置时对齿轮箱可能发生的故障信号是否能被识别与分离研究较少的情况,将故障可诊断性应用于齿轮箱传感器优化布置中,并运用奇异值比值、故障可诊断性、平均加速度幅值三个评价准则构成的综合指标评价不同布置方案,最终确定最优传感器布置方案。首先,对齿轮箱进行模态分析,提取模态振型;再运用K均值聚类算法根据自由度在重要模态中振型的动力相似性进行分类;其次利用有效独立平均加速度幅值法初选测点;然后,在这些节点位置处测得可能出现的故障信号,对其进行快速傅里叶变换,得到相应故障的频谱图,利用核密度估计求取对应故障的密度函数,再利用K-L散度判断各位置处的故障可诊断性;最后,运用综合指标评价,确定最优方案。通过ZDH10型齿轮箱故障诊断试验台验证了所提方法的可行性。

Abstract

At present, when optimizing the position of a sensor, there is little research on whether the possible fault signal of a gearbox can be identified and separated.In this work, the fault diagnosability was applied to the optimal sensors placement of a gear box, and the different placement schemes were evaluated by using the comprehensive index composed of three evaluation criteria: singular value ratio, fault diagnosability, and average acceleration amplitude, and the optimal sensor placement scheme was determined.Firstly, the modal analysis of the gearbox was carried out to extract the modal modes, and then the K-means clustering algorithm was used to classify the dynamic similarity of shape modes of degrees of freedom at important modes.Secondly, the effective independent average acceleration amplitude method was used to select the initial measuring points.Then, the possible fault signals were measured at the positions of these nodes, and the corresponding fault spectrum was obtained by the fast Fourier transform.The density function of the corresponding fault was obtained by using the Kernel density estimation, and then the fault diagnosability at each position was judged by Kullback-Leibler divergence.Finally, the comprehensive index was used to evaluate the optimal scheme.The feasibility of the proposed method was verified on the ZDH10 gearbox fault diagnosis setup.

关键词

齿轮箱 / 传感器优化布置 / K均值聚类 / 核密度估计 / K-L散度 / 故障可诊断性

Key words

gear box / optimal sensor placement / K-means clustering / kernel density estimation / Kullback-Leibler divergence / fault diagnosability

引用本文

导出引用
彭珍瑞,刘臻. 基于故障可诊断性的齿轮箱传感器优化布置[J]. 振动与冲击, 2021, 40(4): 155-163
PENG Zhenrui,LIU Zhen. Optimal sensor placement of a gear box based on fault diagnosability[J]. Journal of Vibration and Shock, 2021, 40(4): 155-163

参考文献

[1] 蒋栋年, 李炜, 王君,等. 基于故障可诊断性量化评价的传感器优化配置方法研究[J].自动化学报,2018,44(06):1128-1137.
JIANG Dong-nian, LI Wei, WANG Jun, SUN Xiao-Jing. Research on sensor optimal placement method using quantitative evaluation of fault diagnosability [J]. Journal of Automation,2018,44(06):1128-1137.
[2] Kammer D C. Sensor placement for on-orbit modal identification and correlation of large space structures [J]. Journal of Guidance Control & Dynamic, 1991, 14(02): 251-259.
[3] Papadopoulos M, Garcia E. Sensor Placement Methodologies for Dynamic Testing [J]. AIAA Journal,1998, 36(02):256–263.
[4] 刘伟, 高维成, 李惠,等. 基于有效独立的改进传感器优化布置方法研究[J].振动与冲击,2013,32(06):54-62.
LIU Wei, GAO Wei-cheng, LI Hui, SUN Yi. Improved optimal sensor placement methods based on effective independence [J]. Journal of Vibration and Shock,2013,32(06):54-62.
[5] 詹杰子, 余岭. 传感器优化布置的有效独立-改进模态应变能方法[J].振动与冲击,2017,36(01):82-87.
ZHAN Jie-zi, YU Ling. An effective independence-improved modal strain energy method for optimal sensor placement [J]. Journal of Vibration and Shock, 2017,36(01):82-87.
[6] Stephan C. Sensor placement for modal identification [J]. Mechanical Systems & Signal Processing, 2012, 27(01): 461-470.
[7] Lu W, Wen R F, Teng J, et al. Data correlation analysis for optimal sensor placement using a bond energy algorithm[J]. Measurement, 2016, 91: 509-518.
[8] Liu K, Yan R J, Soares G. Optimal sensor placement and assessment for modal identification [J]. Ocean Engineering, 2018, 165:209-220.
[9] 魏秀业, 潘宏侠, 黄晋英. 齿轮箱传感器优化布置研究[J].兵工学报,2010,31(11):1508-1513.
WEI Xiu-ye, PAN Hong-xia, HUANG Jin-ying. Study on sensor optimal layout for gearbox [J]. Acta Armamentarii, 2010,31(11):1508-1513.
[10] 杜稳稳. 风力发电机组振动状态监测与故障诊断[D].华东理工大学,2011.
DU Wen-wen. Vibration state monitoring and fault diagnosis of wind turbine [D]. East China University of Science and Technology,2011
[11] 王桂兰, 赵洪山, 郭双伟. 基于结构分析的风机齿轮箱传感器配置研究 [J].振动与冲击,2018,37(24):181-188.
WANG Gui-lan, ZHAO Hong-shan, GUO Shuang-wei. Structural analysis based sensor placement of a wind turbine gearbox [J]. Journal of Vibration and Shock, 2018, 37(24):181-
188.
[12] 彭珍瑞, 张楠, 殷红,等. 基于频响函数的动车组构架传感器优化布置 [J].西南交通大学学报,2019,54(02):402-407+414.
PENG Zhen-rui, ZHANG Nan, YIN Hong, DONG Kang-li. Optimal sensor placement of EMU frame based on frequency response function [J]. Journal of Southwest Jiaotong University,2019, 54(02):402-407+414.
[13] 郭远晶, 魏燕定, 金晓航,等. 频谱密度函数相似性比较的齿轮箱故障诊断[J].振动工程学报,2018,31(01):157-164.
GUO Yuan-jing, WEI Yan-ding, JIN Xiao-hang, YANG You-dong.Gearbox fault diagnosis using similarity comparison of frequency spectrum density function [J]. Journal of Vibration Engineering,2018,31(01):157-164.
[14] 李学军, 李萍, 褚福磊. 基于相关函数的多振动信号数据融合方法[J].振动、测试与诊断,2009,29(02):179-183+242.
LI Xue-jun, LI Ping, CHU Fu-lei. Data fusion of multi-sensor vibration signal using correlation function [J]. Journal of Vibration, Measurement & Diagnosis, 2009, 29(02): 179-183+242.
[15] Eriksson D, Frisk E, Krysander M. A method for quantitative fault diagnosability analysis of stochastic linear descriptor models [J]. Automatica,2013,49(06):1591-1600.
[16] Chi G Y, Wang D W. Sensor placement for fault isolability based on bond graphs [J]. IEEE Transactions on Automatic Control, 2015, 60(11):3041-3046.
[17] 王剑, 王璋奇. 输电铁塔双轴加速度传感器多目标优化布置[J].仪器仪表学报,2016,37(02):277-285.
WANG Jian, WANG Zhang-qi. Multi-objective optimization placement of the biaxial accelerometer for transmission tower [J]. Chinese Journal of Scientific Instrument,2016,37(02): 277-285.

PDF(1645 KB)

485

Accesses

0

Citation

Detail

段落导航
相关文章

/