多级齿轮传动转子系统的模态缩减与振动特性分析

韩健明,杨翼,马清雅,王滋华,戴义平

振动与冲击 ›› 2021, Vol. 40 ›› Issue (4) : 43-50.

PDF(1540 KB)
PDF(1540 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (4) : 43-50.
论文

多级齿轮传动转子系统的模态缩减与振动特性分析

  • 韩健明,杨翼,马清雅,王滋华,戴义平
作者信息 +

Modal reduction and vibration analysis for a multi-stage geared rotors system

  • HAN Jianming,YANG Yi,MA Qingya,WANG Zihua,DAI Yiping
Author information +
文章历史 +

摘要

提出了一种适用于多级齿轮传动转子系统的模态缩减法,以某透平驱动水泵系统为研究对象,采用有限元法建立了系统的动力学模型,并利用模态缩减法减少了系统自由度。在此基础上研究了系统的固有特性、不平衡量与静态传递误差引起的稳态响应、启动状态下的瞬态响应以及稳定运转下突加不平衡时的瞬态响应。结果表明,在计算系统的固有频率和稳态响应时,缩减后的模型相比于原模型依然具有较高的精度。静态传递误差激励在低转速范围内即可激发系统的高阶模态,为保证计算精度,在计算静态传递误差激励引起的响应时应保留一定数量的自由度。在计算瞬态响应时,缩减后的自由度模型相比完整模型节省计算时间超过90%,且偏差很小。综上所述,提出的模态缩减法在保证计算准确性的同时大大缩减了计算时间,为多级齿轮传动转子系统动力学特性的准确预测和分析提供了高效可靠的方法。

Abstract

Taking a turbine driven pump system as the research object, modal reduction suitable for multi-stage geared rotors system was proposed.A dynamic model of the system was established by the finite element modeling method.And the degree of freedom of the system was reduced by the modal reduction.Based on this, inherent characteristic, steady state response due to mass unbalance and static transfer error, transient response in start-up state, and transient response when sudden unbalance occurs under steady operation were studied.Results show that the reduced model still has higher precision than the original model in calculating natural frequency and steady state response of the system.Static transfer error excitation can excite high order modes of the system in low rotation speed range.To ensure the calculation accuracy, the certain number of degree of freedom should be retained when calculating the response caused by the static transfer error excitation.When calculating the transient response, the reduced model saves more than 90% of calculation time compared to the original model, and deviation is small.In summary, the proposed modal reduction greatly reduces calculation time while ensuring calculation accuracy, and provides an efficient and reliable method for accurate prediction and analysis of the dynamic characteristic of the multi-stage geared rotors system.

关键词

多级齿轮传动转子系统 / 模态缩减法 / 固有特性 / 动力学响应

Key words

multi-stage geared rotors system / modal reduction / inherent characteristic / dynamic response

引用本文

导出引用
韩健明,杨翼,马清雅,王滋华,戴义平. 多级齿轮传动转子系统的模态缩减与振动特性分析[J]. 振动与冲击, 2021, 40(4): 43-50
HAN Jianming,YANG Yi,MA Qingya,WANG Zihua,DAI Yiping. Modal reduction and vibration analysis for a multi-stage geared rotors system[J]. Journal of Vibration and Shock, 2021, 40(4): 43-50

参考文献

[1] Rao J S, Chang J R, Shiau T N. Coupled bending-torsion vibration of geared rotors[C]. USA: 1995. 977-989.
[2] Saxena A, Parey A, Chouksey M. Study of Modal Characteristics of a Geared Rotor System[J]. Procedia Technology, 2016, 23:225-231.
[3] 蒋庆磊, 吴大转, 谭善光, 等. 齿轮传动多转子耦合系统振动特性研究[J]. 振动工程学报, 2010, 23(3): 254-259.
JIANG Qinglei, WU Dazhuan, TAN Shanguang, et al. Development and application of a model for coupling geared rotors system[J]. Journal of Vibration Engineering, 2010, 23(3): 254-259.
[4] 车永强. 齿轮传动双转子弯扭振动研究[D]. 杭州: 浙江大学, 2012.
[5] 王逸龙, 曹登庆, 杨洋, 等. 新型阻尼环对转子-齿轮传动系统弯扭耦合振动的减振研究[J]. 振动与冲击, 2018, 37(22): 27-34.
WANG Yilong, CAO Dengqing, YANG Yang, et al. Bending-torsion coupling vibration suppression of a rotor-gear transmission system using a new type damping ring[J]. Journal of Vibration and Shock, 2018, 37(22): 27-34.
[6] 常乐浩, 贺朝霞, 刘更. 平行轴齿轮传动系统动力学建模的有限单元法[J]. 振动与冲击, 2016, 35(20): 47-53.
CHANG Lehao, HE Zhaoxia, LIU Geng. Dynamic modeling of parallel shaft gear transmissions using finite element method[J]. Journal of Vibration and Shock, 2016, 35(20): 47-53.
[7] 庞辉, 方宗德, 欧卫林, 等. 多平行齿轮耦合转子系统的振动特性分析[J]. 振动与冲击, 2007, 26(6):21-25.
PANG Hui, FANG Zongde, OU Weilin, et al. Vibration analysis of coupling geared multi-parallel rotors system[J]. Journal of Vibration and Shock, 2007, 26(6):21-25.
[8] 张义民, 何永慧, 朱丽莎, 等. 多平行轴齿轮耦合转子系统的振动响应[J]. 振动、测试与诊断, 2012, 32(4):527-531.
ZHANG Yimin, HE Yonghui, ZHU Lisha, et al. Vibration response of coupling geared multi-parallel rotors system[J]. Journal of Vibration,Measurement and Diagnosis, 2012, 32(4):527-531.
[9] 王奇斌. 斜齿轮耦合转子系统动力学特性研究[D]. 沈阳: 东北大学, 2012.
[10] 朱丽莎, 张义民, 马辉, 等. 多齿轮耦合复杂转子系统的振动特性分析[J]. 振动与冲击, 2013(14): 39-44.
ZHU Lisha, ZHANG Yimin, MA Hui, et al. Vibration behavior analysis of a complex rotor system with coupled multi-gear meshing[J]. Journal of Vibration and Shock, 2013(14): 39-44.
[11] Stringer D B, Sheth P N, Allaire P E. Modal reduction of geared rotor systems with general damping and gyroscopic effects[J]. Journal of Vibration and Control, 2011, 17(7): 975-987.
[12] Stringer D B. Geared rotor dynamic methodologies for advancing prognostic modeling capabilities in rotary-wing transmission systems[M]. 2008.
[13] Garvey S D, Friswell M I, Prells U. Co-ordinate transformations for second order systems. Part I: General transformations[J]. Journal of Sound and Vibration, 2002, 258: 885-909.
[14] Garvey S D, Friswell M I, Prells U. Co-ordinate transformations for second order systems. Part II: elementary structure-preserving transformations[J]. Journal of Sound and Vibration, 2002, 258: 911-930.
[15] Stringer D B, Sheth P N, Allaire P E. Modal synthesis of a non-proportionally damped, gyroscopically influenced, geared rotor system via the state-space[R]. Army Research Laboratory Vehicle Technology Directorate, 2008.
[16] Rao J S, Shiau T N, Chang J R. Theoretical analysis of lateral response due to torsional excitation of geared rotors[J]. Mechanism and Machine Theory. 1998, 33: 761-783.
[17] Lalanne M, Ferraris G. Rotordynamics prediction in engineering[M]. Wiley, 1998.

PDF(1540 KB)

806

Accesses

0

Citation

Detail

段落导航
相关文章

/