既有桥梁对相邻车—桥系统气动力的影响分析

严乃杰1,2,吴韬3,臧瑜4,李永乐2,郑博文3,戴建国4

振动与冲击 ›› 2021, Vol. 40 ›› Issue (4) : 51-57.

PDF(1876 KB)
PDF(1876 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (4) : 51-57.
论文

既有桥梁对相邻车—桥系统气动力的影响分析

  • 严乃杰1,2,吴韬3,臧瑜4,李永乐2,郑博文3,戴建国4
作者信息 +

A study on the effect of an existing bridge on the aerodynamic forces of an adjacent vehicle-bridge system

  • YAN Naijie1,2,WU Tao3,ZANG Yu4,LI Yongle2,ZHENG Bowen3,DAI Jianguo4
Author information +
文章历史 +

摘要

为了研究既有桥梁对相邻车—桥系统气动力的影响,通过节段模型风洞试验,测试了考虑、不考虑既有桥梁干扰工况下相邻车—桥系统的气动力系数,数值模拟了作用在车—桥系统上的抖振力时程,并计算了抖振力极值。结果表明:既有桥梁对相邻车—桥系统气动力的影响显著,导致部分工况下列车、桥梁的气动力显著增大,结构设计中应充分考虑邻近桥梁的气动影响;车—桥系统中列车的气动力受既有桥梁的影响更大;受既有桥梁影响,不同工况下,列车横向力系数最大增幅、减幅分别为39.3%和-143.1%,列车升力系数最大增幅、减幅分别为52%和-68.2%;不同工况下桥梁阻力系数均减小,且最大减幅为-22.4%;迎风侧列车抖振横向力、抖振升力幅值均显著增大,背风侧列车抖振力幅值变化相对较小;桥梁抖振力阻力幅值减小,抖振升力和抖振升力矩幅值略有增大;列车抖振横向力、抖振升力的极值增幅分别为35%和67%;桥梁抖振阻力的极值减幅为-22.9%,抖振升力、抖振升力矩的极值增幅分别为48.5%和37.5%。

Abstract

In order to investigate the effect of an existing bridge on the aerodynamic forces of an adjacent vehicle-bridge system, the aerodynamic coefficients of a new-built vehicle-bridge system were tested by a section model wind tunnel test with taking into account an existing bridge or not.The time histories of buffeting forces loading on the vehicle-bridge system were numerically simulated, and the extreme values of buffeting forces were calculated.The results show that the existing bridge has remarkable effect on the aerodynamic forces of the adjacent vehicle-bridge system, which results in the obvious increase of aerodynamic forces of the vehicle and the bridge in the same cases.The effect of the existing bridge on the adjacent vehicle-built system should be considered in the process of structure design.The existing bridge has greater effect on the vehicle than on the bridge.Due to the influence of the existing bridge, the maximum increment and decrement of side force coefficient of the vehicle are 39.3% and -143.1%, respectively.The maximum increment and decrement of lift force coefficient of vehicle are 52% and -68.2%, respectively.The drag force coefficients of the bridge all decrease in different cases, and the maximum decrement is -22.4%.The amplitudes of buffeting side force and buffeting lift force of the windward vehicle increase obviously, and the amplitudes of buffeting forces of the leeward vehicle change slightly.The amplitude of buffeting drag force of the bridge all decrease, and the amplitude of buffeting lift force and buffeting lifting moment increase slightly.The increment of extreme value of the buffeting side force and buffeting lift force of the vehicle are 35% and 67% respectively.The decrement of the extreme value of buffeting drag force of the bridge is -22.9%, and the increment of the extreme value of buffeting lifting force and buffeting lifting moment are 48.5% and 37.5% respectively.

关键词

车&mdash / 桥系统;风洞试验;数值模拟;气动力系数;抖振力

Key words

vehicle-bridge system / wind tunnel test / numerical simulation / aerodynamic coefficients / aerodynamic forces

引用本文

导出引用
严乃杰1,2,吴韬3,臧瑜4,李永乐2,郑博文3,戴建国4. 既有桥梁对相邻车—桥系统气动力的影响分析[J]. 振动与冲击, 2021, 40(4): 51-57
YAN Naijie1,2,WU Tao3,ZANG Yu4,LI Yongle2,ZHENG Bowen3,DAI Jianguo4. A study on the effect of an existing bridge on the aerodynamic forces of an adjacent vehicle-bridge system[J]. Journal of Vibration and Shock, 2021, 40(4): 51-57

参考文献

[1] 周  丹, 田红旗, 鲁寨军, 等. 大风对路堤上运行的客运列车气动性能的影响[J]. 交通运输工程学报, 2007, 7(4):6-9.
ZHOU Dan, TIAN Hong-qi, LU Zhai-jun, et al. Influence of strong crosswind on aerodynamic performance of passenger train running on embankment[J]. Journal of Traffic and Transportation Engineering, 2007, 7(4):6-9. (in Chinese)
[2] Irwin P A, Stoyanoff S, Xie J, et al. Tacoma Narrows 50 years later—wind engineering investigations for parallel bridges[J]. Bridge Structures, 2005, 1(1): 3-17.
[3] 陈政清, 牛华伟, 刘志文. 平行双箱梁桥面颤振稳定性试验研究[J]. 振动与冲击, 2006, 25(6):54-58.
CHEN Zheng-qing, NIU Hua-wei, LIU Zhi-wen. Experimental study on flutter stability of parallel box-girder bridges[J]. Journal of Vibration and Shock, 2006, 25(6): 54―58. (in Chinese)
[4] 陈政清, 牛华伟, 刘志文. 双幅桥面桥梁主梁气动干扰效应研究[J]. 桥梁建设, 2007, 25(6):9-12.
CHEN Zheng-qing, LIU Xiao-bing, LIU Zhi-wen. Study of aerodynamic interference effect on main girders of twin-deck bridges [J]. Bridge Construction, 2007, 25(6):9-12.
[5] 朱乐东, 周  奇, 郭震山, 等. 箱形双幅桥气动干扰效应对颤振和涡振的影响[J]. 同济大学学报(自然科学版), 2010, 38(5):632-638.
ZHU Le-dong, ZHOU Qi, GUO Zhen-shan, et al. Aerodynamic interference effects on flutter and vortex-excited resonance of bridges with twin-separated parallel box decks[J]. Journal of Tongji University, 2010, 38(5): 632―638. (in Chinese)
[6] 郭震山, 孟晓亮, 周  奇, 等. 既有桥梁对邻近新建桥梁三分力系数的气动干扰效应[J]. 工程力学, 2010, 27(9):181-186.
GUO Zheng-shan, MENG Xiao-liang, ZHOU Qi, et al. Aerodynamic interference effects of an existed bridge on aerodynamic coefficients of an adjacent new bridge[J]. Engineering Mechanics, 2010, 27(9):181-186. (in Chinese)
[7] 刘小兵, 杨  群. 双幅典型断面静力系数气动干扰试验研究[J]. 工程力学, 2012, 29(增刊II): 107―112.
LIU Xiao-bing YANG Qun. Experimental study on aerodynamic interference on aerostatic coefficients of twin representative section[J]. Engineering Mechanics, 2012, 29(Suppl II): 107―112. (in Chinese)
[8] 秦  浩, 廖海黎, 李明水. 大跨度双幅连续钢箱梁桥涡激振动特性风洞试验研究[J]. 振动与冲击, 2014, 33(14):206-210.
QIN Hao, LIAO Hai-li, LI Ming-shui. Vortex induced vibration performance of long span continuous steel twin box beam bridge based on wind tunnel tests[J]. Journal of Vibration and Shock, 2014, 33(14):206-210. (in Chinese)
[9] 李志国, 周  强, 马存明, 等. 中央格栅抑制分离式双箱梁涡振的机理研究[J]. 桥梁建设. 2018, 48(1):19-24.
LI Zhi-guo, ZHOU Qiang, MA Cun-ming, et al. Mechanism of suppressing vortex-induced vibration of twin-box girder using central girds[J]. Engineering Mechanics, 2018, 48(1): 19-24. (in Chinese)
[10] Baker C J, Hemida H, Iwnicki S, et al. Integration of crosswind forces into train dynamic modelling. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 225(2):154-164.
[11] Baker C J. The simulation of unsteady aerodynamic cross wind forces on trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(2):88-99.
[12] Yan Nai-jie, Chen Xin-zhong, Li Yong-le. Assessment of overturning risk of high-speed trains in strong crosswinds using spectral analysis approach[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 174:103-118.
[13] 李永乐, 廖海黎, 强士中. 车桥系统气动特性的节段模型风洞试验研究[J]. 铁道学报, 2004, 26(3):71-75.
LI Yong-le, LIAO Hai-li, QIANG Shi-zhong. Study on aerodynamic characteristics of the vehicle-bridge system by the section model wind tunnel test[J]. Journal of the China Railway Society, 2004, 26(3):71-75. (in Chinese)
[14] Wu Meng-xue, Li Yong-le, Chen, Xin-zhong, et al. Wind spectrum and correlation characteristics relative to vehicles moving through cross wind field[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 133:92-100.
[15] 李  田, 秦  登, 蔡华闽, 等. 高速列车随车移动点的脉动风速模拟[J]. 交通运输工程学报, 2018, 18(04):116-123.
LI Tian, QIN Deng, CAI Hua-min, et al. Simulation of fluctuation wind velocity at given position on moving high-speed train[J]. Journal of Traffic and Transportation Engineering, 2018, 18(04):116-123. (in Chinese)

PDF(1876 KB)

374

Accesses

0

Citation

Detail

段落导航
相关文章

/