考虑时变温度作用的新型波形钢腹板组合箱梁动力特性分析

王力1,刘世忠1,丁万鹏1,路韡1,2,牛思胜3,冯伦2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (4) : 58-65.

PDF(1607 KB)
PDF(1607 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (4) : 58-65.
论文

考虑时变温度作用的新型波形钢腹板组合箱梁动力特性分析

  • 王力1,刘世忠1,丁万鹏1,路韡1,2,牛思胜3,冯伦2
作者信息 +

Dynamic analysis of a new-pattern composite box girder with corrugated steel webs under time-varying temperature condition

  • WANG Li1,LIU Shizhong1,DING Wanpeng1,LU Wei1,2,NIU Sisheng3,FENG Lun2
Author information +
文章历史 +

摘要

针对新型波形钢腹板组合箱梁在日照辐射和变温环境影响下结构温度呈现不均匀分布,从而引起结构动力特性变化的问题。基于应力等效原则提出一种时变温度作用下考虑钢-混接触面滑移效应的新型波形钢腹板组合箱梁自振频率解析计算方法。并以一根跨径为8.0m的新型波形钢腹板简支组合箱梁为研究对象,对试验梁进行有限元模拟分析和解析计算,并与现场实测值进行对比分析,验证本文所提方法的可靠性,揭示了时变日照温度对新型波形钢腹板组合箱梁动力特性的影响机理。结果表明:(1)时变温度会引起新型波形钢腹板组合箱梁频率的显著改变,各阶振型频率与温度呈线性负相关关系。(2)混凝土弹性模量的改变是波形钢腹板组合箱梁时变温度动力特性变化的关键因素。(3)温度引起新型波形钢腹板组合箱梁前4阶模态频率的相对变化可达5.2%~7.3%,在该类桥梁动力特性测试与结构性能评估中应考虑温度影响。

Abstract

Under the influence of sunshine radiation and variable temperature environment, the structural temperature of a new type of composite box girder with corrugated steel web (CSW) presents uneven distribution, which causes the change of static and dynamic characteristics of the structure.In this work, a new analytical method for the calculation of the natural frequency of a composite box girder with CSW was proposed based on the stress equivalence principle, which considers the slip effect of steel-concrete interface under the action of time-varying temperature.Taking the new type of simple supported CSW composite box girder with a span of 8.0 m as the research object, the finite element simulation analysis and analytical calculation were carried out for the test beam, and the comparison was made with the field measured value.The results show that: time-varying temperature will cause significant change in the frequency of the new-pattern CSW composite box girder; the change of the elastic modulus of concrete is the key factor of the dynamic characteristic of CSW composite box girder; the temperature causes the relative change of the 3rd-order modal frequency of the new-pattern CSW composite box girder up to 5.2%-7.3%, and the influence of temperature effect should be considered in the dynamic characteristic test and structural performance evaluation of this type of bridge.

关键词

波形钢腹板 / 组合箱梁 / 时变温度效应 / 自振频率 / 动力特性

Key words

corrugated steel web(CSW) / composite box girder / time-varying temperature effect / natural frequency / dynamic characteristics

引用本文

导出引用
王力1,刘世忠1,丁万鹏1,路韡1,2,牛思胜3,冯伦2. 考虑时变温度作用的新型波形钢腹板组合箱梁动力特性分析[J]. 振动与冲击, 2021, 40(4): 58-65
WANG Li1,LIU Shizhong1,DING Wanpeng1,LU Wei1,2,NIU Sisheng3,FENG Lun2. Dynamic analysis of a new-pattern composite box girder with corrugated steel webs under time-varying temperature condition[J]. Journal of Vibration and Shock, 2021, 40(4): 58-65

参考文献

[1]宗周红,张坤,廖聿宸,等.考虑运营环境不确定性的斜拉桥模态频率识别[J].中国公路学报,2019,32(11):40-50.
ZONG Zhouhong,ZHANG Kun,LIAO Yuchen,et al.Modal Frequency Identification of Cable-stayed Bridges Considering Uncertainties of Operational Environmental Factors[J]. China Journal of Highway and Transport,2019,32(11):40-50. (in Chinese)
[2] Xu Y. L.,Chen B.,Ng C. L.,et al.Monitoring  temperature  effect  on  a  long  suspension bridge[J].Structural Control & Health Monitoring, 2010,17(6):632-653.
[3] Manoach E , Samborski S , Mitura A , et al. Vibration based damage detection in composite beams under temperature variations using Poincaré maps[J]. International Journal of Mechanical Sciences, 2012, 62(1):120-132.
[4] Henderson I E J, Uy B , Zhu X Q , et al. Environmental Factors Affecting the Dynamic Response of Composite Steel-Concrete Beams[C]// International Conference on Composite Construction in Steel & Concrete. 2016.
[5] Peeters B,De Roeck G.One-year monitoring of the Z24-Bridge: environmental effects versus damage events[J]. Earthquake Engineering and Structural Dynamics,2001,30:149-171.
[6] Farrar C R,Doebling S W.Cornwell P J.Variability ofmodal parameters measured on the Alamosa Canyon Bridge[C]//Proceeding of 15th IMAC. Orlando:1997: 257-263.
[7] Doebling S W,Farrar C R.Effects of measurement statistics on the detection of damage in the Alamosa CanyonBridge[C]//Proceeding of 15th IMAC.Orlando:1997: 919-929.
[8] 周毅,孙利民,谢谟文.运营环境作用对跨海大桥模态频率的影响研究[J].工程力学,2018,35(S1):34-39.
ZHOU Yi,SUN Limin,XIE Mowen.Influence of operational and environmental actions on modal frequencies of a sea-crossing bridge[J].Engineering Mechanics,2018,35(S1):34-39.(in Chinese)
[9]杨殊珍,刘保东,杨明哲,等.环境温度和边界条件对混凝土梁式桥自振频率影响研究[J].振动与冲击,2017,36(08):164-172.
YANG Shuzhen, LIU Baodong, YANG Mingzhe, et al.Effect of environmental temperature and boundary conditions on concrete beam bridges'natural frequencies[J].Journal of Vibration and Shock, 2017, 36 (8) :164-172. (in Chinese)
[10] 常鹏,王英剑,吴云峰,等.基于主成分分析的温度敏感性结构损伤识别[J].振动工程学报,2019,32(02):234-240.
CHANG Peng,WANG Ying-jian,WU Yun-feng,et al. Damage identification of temperature-sensitive structure based on principal component analysis[J].Journal of Vibration Engineering,2019,32(02):234-240. (in Chinese)
[11] 王立新,朱嘉健,姜慧,等.珠江黄埔大桥模态频率连续监测中的温度影响:温度影响及建模分析[J].震灾防御技术,2016,11(02):251-260.
Wang Lixin, Zhu Jiajian, Jiang Hui. Temperature influence in modal frequency continuous monitoring of Huangpu suspension bridge on the Zhujiang River[J].Technology for Earthquake Disaster Prevention, 2016, 11 (2) :251-260. (in Chinese)
[12] 闵志华,孙利民,仲政.环境温度对斜拉桥动力特性的影响分析[J].同济大学学报(自然科学版),2011,39(04):488-494.
MIN Zhi-hua, SUN Li-min, ZHONG Zheng. Effect Analysis of Environmental Temperature on Dynamic Properties of Cable-stayed Bridge[J]. Journal of Tongji University:Natural Science Edition, 2011, 39 (4) :488-494. (in Chinese)
[13]刘昊,常军.曲率模态在检测环境温度下简支梁损伤中的应用[J].苏州科技大学学报(工程技术版),2019,32(02):58-63.
LIU Hao,CHANG Jun.Application of curvature mode in detecting damage of simple beam under ambient temperature[J]. Journal of Suzhou University of Science and Technology(Engineering and Technology),2019,32(02):58-63. (in Chinese)
[14]刘才玮,苗吉军,高天予,等.基于动力测试的钢筋混凝土梁火灾损伤识别方法[J].振动与冲击,2019,38(11):121-131.
LIU Caiwei,MIAO Jijun,GAO Tianyu,et al.Identification method for fire damage of RC beams based on dynamic tests[J]. Journal of Vibration and Shock,2019,38(11):121-131.(in Chinese)
[15]荀智翔,王浩,茅建校.台风期间润扬悬索桥模态参数环境相关性研究[J].防灾减灾工程学报,2018,38(02):318-326.
XUN Zhixiang,WANG Hao,MAO Jianxiao.Environmental Correlation Study on Modal Parameter of Runyang Suspension Bridge during Typhoon[J]. Journal of Disaster Prevention and Mitigation Engineering,2018,38(02):318-326. (in Chinese)
[16]李嘉维,夏樟华,余印根,等.基于长期动力特性监测数据的大跨度桥梁安全性能评估[J].福州大学学报(自然科学版),2014,42(04):596-605.
LI Jiawei,XIA Zhanghua,YU Yingen,et al.Safety assessment of long-span bridges based on long-term dynamic characteristics monitoring data[J]. Journal of Fuzhou University(Natural Science Edition),2014,42(04):596-605. (in Chinese)
[17]刘永健,刘江.钢-混凝土组合梁桥温度作用与效应综述[J].交通运输工程学报,2020,20(01):42-59.
LIU Yongjian,LIU Jiang.Review on temperature action and effect of steel-concrete composite girder bridge[J]. Journal of Traffic and Transportation Engineering,2020,20(01):42-59.
[18]聂建国, 沈聚敏, 余志武.考虑滑移效应的钢-混凝土组合梁变形计算的折减刚度法[J].土木工程学报,1995,28(6):11-17.
Nie Jianguo, Shen Jumin, Yu Zhiw u.A reduced rigidity method for calculating deformation of composite steel-concrete beams[J].China Civil Engineering Journal, 1995, 28 (6) :11-17. (in Chinese)
[19]夏樟华,宗周红.三跨斜交T梁动力特性分析[J].振动与冲击,2007(04):147-150+177.
Xia Zhanghua,Zong Zhouhong.Dynamic analysis of a skewed T-girder bridge with three-spans[J]. Journal of Vibration and Shock,2007(04):147-150+177.
[20] De Roeck G., Peeter B.MACEC2.0-Modal Analysis on Civil Engineering Constructions[R].Belgium:Department of Civil Engineering, Catholic University of Leuven, 1999.
[21] Ren Wei-xin, Zong Zhou-hong.Experimental Modal Parameter Identification of Civil Engineering Structures[J], International Journal of Strcuture Engineering and Mechnanics,2004, 17 (3-4) :429—444.
[22]GB 50917—2013,钢-混凝土组合桥梁设计规范[S].
GB 50917—2013,Code for design of steel-concrete composite bridges[S].
[23]Zhou G D,Yi T H.Thermal load in large-scale bridges:a state-of-the-art review[J].International Journal of Distributed Sensor Networks, 2013(7-8): 1-17.
[24] Liu H B,Wang X Q,Jiao YB.Effect of Temperature Variation on Modal Frequency of Reinforced Concrete Slab and Beam in Cold Regions[J].Shock and vibration.2016.
[25] Xia Y, Xu Y L, Wei Z  L, et al. Variation of structural vibration characteristics versus non-uniform temperature distribution[J]. Engineering Structures, 2011, 33(1): 146-153.
[26]贾单锋,王元清,崔佳,等.桥梁钢Q345qD低温力学性能及冲击韧性试验研究[J].钢结构,2017,32(05):41-45.
Jia Danfeng Wang Yuanqing Cui Jia,et al.Experimental research on mechanical properties and impact toughness of bridge steel Q345qD at low temperature[J]. Steel Construction,2017,32(05): 41-45. (in Chinese)
[27] 李国强,陈凯,蒋首超,等.高温下Q345钢的材料性能试验研究[J].建筑结构,2001(01):53-55.
Li Guoqiang,Chen Kai,Jiang Shouchao,et al.Experimental Study on the Material Properties of Q345 Steel at Elevated Temperatures[J]. Building Structure,2001(01):53-55.
[28]林纾,吴红.兰州最高最低气温的非对称变化[J].气象科技,2004(06):444-449.
Lin Shu,Wu Hong.Asymmetric Trend of Maximum and Minimum Temperature Change in Lanzhou[J]. Meteorological Science and Technology,2004(06):444-449. (in Chinese)

PDF(1607 KB)

331

Accesses

0

Citation

Detail

段落导航
相关文章

/