[1] Y. W. Chang, J. C. Jung, P. H. Seong. Algorithm automation for nuclear power plant Loose Parts Monitoring System [J]. Nuclear Engineering and Design, 2004,231(1):99-107.
[2] 蔡金锭, 鄢仁武. 基于小波分析与随机森林算法的电力电子电路故障诊断[J]. 电力科学与技术学报, 2011, 26(2):54-60.
Cai Jin-ding, Yan Ren-wu. Fault diagnosis of power electronic circuit based on wavelet analysis and random forests algorithm[J]. Journal of Electric Power Science and Technology, 2011, 26(2):54-60.
[3] VAPNIK V. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995.
[4] 袁胜发, 褚福磊. 支持向量机及其在机械故障诊断中的应用[J]. 振动与冲击, 2007, 36(11):29-35.
Yuan Sheng-fa, Chu Fu-lei. Support vector machines and its application in machine fault diagnosis[J]. Journal of Vibration and Shock, 2007, 36(11):29-35.
[5] 王小美. 特征维数对支持向量机分类器性能影响的研究——以高光谱遥感影像为例[J]. 测绘科学, 2011,36(1):55-57.
Wang Xiaonei-mei. Impacts of feature dim ensionality to the support vector machine classifier for hyperspectral remote sensing image[J]. Science of surveying and mapping, 2011, 36(1):55-57.
[6] BREIMAN L. Random Forests[J]. Machine Learning, 2001, 45: 5-32.
[7] DRAGOMIRETSKIY K,ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3):531-544.
[8] 杜必强, 孙立江. 变分模态分解和熵理论在超声信号降噪中的应用[J]. 中国工程机械学报, 2017, 15(04):32-39.
Du Bi-qiang, Sun Li-jiang. Application of variational mode decomposition and entropy theory in ultrasonic signal de-noising[J]. Chinese Journal of Construction Machine, 2017, 15(04):32-39.
[9] 钱林, 康敏, 傅秀清, 等. 基于VMD的自适应形态学在轴承故障诊断中的应用[J].振动与冲击, 2017, 36(03):227-233.
QIAN Lin, KANG Min, FU Xiuqing, et al. Application of adaptive morphology in bearing fault diagnosis based on VMD[J].Journal of Vibration and Shock,2017,36(03):227-233.
[10] 黄衍, 查伟雄. 随机森林与支持向量机分类性能比较[J]. 软件, 2012, 33(6):107-110.
Huang Yan, Zha Wei-xiong. Comparison on Classification Performance Between Random Forests and Support Vector Machine[J]. Software, 2012, 33(6):107-110.
[11] 董绍江.基于优化支持向量机的空间滚动轴承寿命预测方法研究[D].重庆:重庆大学,2012.
Dong Shao-jiang. Research on Space Bearing Life Prediction Method Based on Optimized Support Vector Machine[D]. Chongqing: Chongqing University, 2012.
[12] Liu F, Liu Y, Chen F, et al. Residual life prediction for ball bearings based on joint approximate diagonalization of eigen matrices and extreme learning machine[J]. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science 1989-1996 (vols 203-210), 2015, 231(9).
[13] 马增强, 李亚超, 刘政, 等. 基于变分模态分解和Teager能
量算子的滚动轴承故障特征提取[J]. 振动与冲击, 2016, 13:134-139.
Ma Zeng-qiang, Li Ya-chao, Liu Zheng, et al. Rolling bearing fault feature extraction based on variational mode decomposition and Teager energy operator[J]. Journal of Vibration and Shock, 2016, 13:134-139.