混凝土结构在受热或者火灾作用后其内部极易形成微裂纹,这将严重影响混凝土的耐久性与强度等特性。基于非线性声场调制理论,提出边带峰计数法及损伤指标概念,以评估热损伤混凝土微裂纹的发展。通过高温制备热损伤混凝土,对热损伤混凝土微裂纹的检测结果表明,损伤指标会随微裂纹的发展而增大,与理论研究吻合。证明了非线性声场调制法的可行性,并引入非线性声场共振法进行对比实验,分析了调制法的优越性。并对不同水灰比、骨料比与升温速率的热损伤混凝土微裂纹的检测实验发现,损伤指标峰值会随混凝土水灰比或骨料比的增大而增大,缓慢升温方式对混凝土的损伤较快速升温方式大,并建立起了残余强度与损伤指标峰值之间的关系,为混凝土材料的热损伤评估奠定基础。
Abstract
Micro-cracks are easy to form in concrete structure after heating or fire, which will seriously affect the durability and strength of concrete. Based on the theory of nonlinear acoustic field modulation, the side band peak counting method and the concept of damage index are proposed to evaluate the development of thermal damaged concrete micro-cracks. Through the preparation of heat damaged concrete at high temperature, the detection results of micro-cracks in heat damaged concrete show that the damage index will increase with the development of micro-cracks, which is consistent with the theoretical research. The feasibility of the nonlinear field modulation method is proved, and the advantages of the modulation method are analyzed by introducing the nonlinear field resonance method for comparative experiments. It is found that the peak value of damage index will increase with the increase of water cement ratio or aggregate ratio of concrete, and the damage index peak value of concrete will increase with the increase of water cement ratio or aggregate ratio of concrete, and the damage index peak value of concrete will increase with the increase of water cement ratio or aggregate ratio of concrete, and the relationship between residual strength and damage index peak value will be established for the evaluation of thermal damage of concrete materials fixed foundation.
关键词
无损检测 /
非线性声场调制 /
非线性声场共振 /
热损伤混凝土 /
微裂纹 /
残余强度
{{custom_keyword}} /
Key words
nondestructive testing /
nonlinear field modulation /
nonlinear field resonance /
heat damaged concrete /
micro-crack /
residual strength
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 库马•梅塔,保罗J.M.蒙特罗. 混凝土:微观结构性能和材料[M]. 北京:中国电力出版社,2008:3-8.
Kumar meita, Paul J.M. Montero. Concrete: microstructure, properties and materials [M]. Beijing: China Electric Power Press, 2008:3-8.
[2] 张小琼,王战军. 混凝土无损检测方法发展及应用[J]. 无损检测,2017,39(04):1-5.
Zhang Xiao-qiong, Wang Zhan-jun. Development and application of concrete nondestructive testing method [J]. Nondestructive testing, 2017, 39 (04): 1-5.
[3] 李志强,周宗辉,徐东宇,等. 基于超声波技术的混凝土无损检测[J]. 水泥工程,2010(03):72-75.
Li Zhi-qiang, Zhou Zong-hui, Xu Dong-yu, et al. Nondestructive testing of concrete based on ultrasonic technology [J]. Cement engineering, 2010 (03): 72-75.
[4] Matysík M, Carbol L, Chobola Z, et al. Comparison of ultrasonic methods for thermally damaged concrete nondestructive testing[J]. Key Engineering Materials, 2018, 776:86-91.
[5] Polimeno M R, Roselli I, Luprano V A M, et al. A non-destructive testing methodology for damage assessment of reinforced concrete buildings after seismic events[J]. Engineering Structures, 2018, 163: 122-136.
[6] 郭松昌,王卫东,郑军亮,等. 探地雷达法和垂直反射法检测塑性混凝土防渗墙的适用性对比分析[J]. 海河水利,2012,(01):42-45.
Guo Song-chang, Wang Wei-dong, Zheng Jun-liang, et al. Comparative analysis of applicability of GPR method and vertical reflection method for detection of plastic concrete cutoff wall [J]. Haihe Water Conservancy, 2012, (01): 42-45..
[7] Ye M A. Infrared thermal imaging detection and recognition technology for defects in concrete structure[J]. Journal of Highway and Transportation Research and Development, 2017.
[8] Xu H G, Shui Z H, Chen B, et al. Defects detection in concrete structure with infrared thermal imaging and numerical simulation[J]. Advanced Materials Research, 2012, 4: 378-379.
[9] Liang M T, Su P. Detection of the corrosion damage of rebar in concrete using impact-echo method[J]. Cement and Concrete Research, 2001, 31 (10): 1427-1436.
[10] 王金枝. 基于超声波方法的混凝土早期损伤识别的实验研究[D]. 武汉:武汉理工大学,2007:1-7.
Wang Jin-zhi. Experimental study on early damage identification of concrete based on ultrasonic method [D]. Wuhan: Wuhan University of technology, 2007:1-7.
[11] Yang H, Lin Y, Hsiao C, et al. Evaluating residual compressive strength of concrete at elevated temperatures using ultrasonic pulse velocity[J]. Fire Safety Journal, 2009, 44 (1): 121-130.
[12] Dilek U, Leming M L. Comparison of pulse velocity and impact-echo findings to properties of thin disks from a fire damaged slab[J]. Journal of Performance of Constructed Facilities, 2007, 21 (1): 13-21.
[13] 敦怡,师小红,王广龙,等. 微纳米级裂纹的非线性超声检测[J]. 光学精密工程,2011,19(1):132-137.
Dun Yi, Shi Xiao-hong, Wang Guang-long, et al. Nonlinear ultrasonic detection of micro nano cracks [J]. Optical precision engineering, 2011, 19 (1): 132-137.
[14] Nie Zhi-chao, Wang Kui, Zhao Ming-jie, et al. Application of wavelet and eemd joint denoising in nonlinear ultrasonic testing of concrete[J]. Advances in Materials Science and Engineering, 2018, 2018: 1-11.
[15] Shah A A, Ribakov Y, Hirose S. Nondestructive evaluation of damaged concrete using nonlinear ultrasonics[J]. Materials and Design, 2009, 30 (3): 775-782.
[16] Shah A A , Ribakov Y. Non-linear non-destructive evaluation of concrete[J]. Open Construction and Building Technology Journal, 2008, 2: 111-115.
[17] Payan C, Garnier V, Moysan J, et al. Applying nonlinear resonant ultrasound spectroscopy to improving thermal damage assessment in concrete[J]. The Journal of the Acoustical Society of America, 2007, 121 (4): EL125-EL130.
[18] Payan C, Ulrich T J, Le Bas P Y, et al. Quantitative linear and nonlinear resonance inspection techniques and analysis for material characterization: Application to concrete thermal damage[J]. The Journal of the Acoustical Society of America, 2014, 136 (2), 537-546.
[19] 蒋雨宏. 基于非线性超声特性的混凝土损伤实验研究[D]. 重庆:重庆交通大学;2014:1-93.
Jiang Yu-hong. Experimental study on concrete damage based on nonlinear ultrasonic characteristics [D]. Chongqing: Chongqing Jiaotong University; 2014: 1-93.
[20] 陈军,尹婷苑,徐征,等. 非线性冲击共振声谱法检测混凝土损伤[J]. 工业建筑,2016,46 (1):95-99.
Chen Jun, Yin Ting-yuan, Xu Zheng, et al. Detection of concrete damage by nonlinear impact resonance spectroscopy [J]. Industrial building, 2016, 46 (1): 95-99.
[21] Van Den Abeele K E A, Carmeliet J, Ten Cate J A, et al. Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, Part II: Single-mode nonlinear resonance acoustic spectroscopy[J]. Journal of Research in Nondestructive Evaluation, 2000, 12 (1), 31-42.
[22] 胡海峰. 板状金属结构健康监测的非线性超声理论与关键技术研究[D].长沙:国防科技大学,2011:10-20.
Hu Hai-feng. Research on nonlinear ultrasonic theory and key technologies for health monitoring of plate metal structures [D]. Changsha: National University of Defense Science and technology, 2011:10-20.
[23] Sutin A M,Johnson P A . Nonlinear Elastic Wave NDE II. Nonlinear wave modulation spectroscopy and nonlinear time reversed acoustics[J]. 2005.
[24] Chen J,Kim J Y,Kurtis K E,et al. Theoretical and experimental study of the nonlinear resonance vibration of cementitious materials with an application to damage characterization[J]. The Journal of the Acoustical Society of America, 2011, 130 (5): 2728-2737.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}