外置可更换耗能器的预制拼装自复位桥墩抗震性能试验研究

贾俊峰1,魏博1,欧进萍1,2,李逸松1,程寿山3

振动与冲击 ›› 2021, Vol. 40 ›› Issue (5) : 154-162.

PDF(3356 KB)
PDF(3356 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (5) : 154-162.
论文

外置可更换耗能器的预制拼装自复位桥墩抗震性能试验研究

  • 贾俊峰1,魏博1,欧进萍1,2,李逸松1,程寿山3
作者信息 +

Tests for seismic performance of prefabricated self-centering bridge piers with external replaceable energy dissipator

  • JIA Junfeng1, WEI Bo1, OU Jinping1,2, LI Yisong1, CHENG Shoushan3
Author information +
文章历史 +

摘要

基于抗震韧性设计理念,结合装配式结构技术,发展了具有外置可更换耗能器的自复位预制拼装桥墩结构。开展了两组自复位预制拼装桥墩模型结构的拟静力往复加载试验研究。介绍了往复加载过程中自复位预制拼装桥墩的受力行为及损伤过程,分析了其力-位移滞回曲线、骨架曲线、耗能能力、预应力筋张拉力变化、残余位移、接缝开口、墩底受压区高度等抗震性能。结果表明:外置耗能部件具有良好的可更换性和耗能能力,更换前后桥墩的抗震性能基本一致。自复位桥墩力-位移滞回曲线呈现出明显的“旗帜”型形态,残余位移较小,具有良好的自复位能力。随墩顶水平位移增加,墩柱内轴向预应力筋张拉力基本呈线性增加,更换耗能器后预应力筋的预应力损失减小。墩底外包钢管有效地抑制了局部混凝土压溃,钢管没有出现局部外鼓等损伤破坏。

Abstract

Based on the concept of earthquake resilience design and incorporated the key technology of precast structures, a self-centering precast bridge column (SPBC) with exterior replaceable energy dissipation devices (EDDs) was developed. Quasi-static lateral cyclic tests of two groups of scaled SPBC models were carried out to investigate and analyze its seismic behavior. The force-displacement hysteresis behavior, skeleton curve, energy dissipation capacity, tension force of prestressing tendons, residual displacement, joint opening, compression zone height at pier bottom were analyzed. The results show that the exterior EDDs adopted in the developed columns have good replaceability and energy dissipation capacity, and the seismic performance of models before and after the replacement of EDDs is basically the same. The hysteretic curves show obvious "flag" type behavior. Smaller residual displacement and good self-centering ability were produced for the SPBC models. With the increase of loading displacement, the tension forces of prestressing tendons in SPBC models increased linearly. The prestress loss was reduced after the EDDs were replaced. The exterior steel jacket at the column base can effectively restrain the local concrete damage, and the steel jacket had no damage such as local exterior bulge.

关键词

可更换耗能器 / 自复位桥墩 / 预制拼装桥墩 / 拟静力试验 / 抗震性能

Key words

replaceable energy dissipation device / self-centering bridge column / precast bridge column / quasi-static test / seismic performance

引用本文

导出引用
贾俊峰1,魏博1,欧进萍1,2,李逸松1,程寿山3. 外置可更换耗能器的预制拼装自复位桥墩抗震性能试验研究[J]. 振动与冲击, 2021, 40(5): 154-162
JIA Junfeng1, WEI Bo1, OU Jinping1,2, LI Yisong1, CHENG Shoushan3. Tests for seismic performance of prefabricated self-centering bridge piers with external replaceable energy dissipator[J]. Journal of Vibration and Shock, 2021, 40(5): 154-162

参考文献

[1] NIED and NEES Consortium. Report of the seventh joint planning meeting of nees/e: defense collaborative research on earthquake engineering[R]. PEER 2010/109. Berkeley, CA: University of California at Berkeley, 2010.
[2] 周颖, 吴浩, 顾安琪. 地震工程: 从抗震、减隔震到可恢复性[J]. 工程力学, 2019, 36(6): 1-12.
ZHOU Ying, WU Hao, GU Anqi. Earthquake engineering: from earthquake resistance, energy dissipation, and isolation, to resilience [J]. Engineering Mechanics, 2019, 36(6): 1-12.
[3] HIEBER D G, WACKER J M, EBERHARD M O, et al. State-of-the-art report on precast concrete systems for rapid construction of bridges. Technical Report No. WA-RD 594.1. Washington State Transportation Center. Seattle, Washington. 2005.
[4] HEWES J T. Analysis of the state of the art of precast concrete bridge substructure systems. Technical report No. FHWA-AZ-13-687, 2013. The Arizona Laboratory for Applied Transportation Research. Flagstaff, Arizona.
[5] 项贻强, 竺盛, 赵阳. 快速施工桥梁的研究进展[J]. 中国公路学报, 2018, 31(12):1-27.
XIANG Yiqiang, ZHU Sheng, ZHAO Yang. Research and development on accelerated bridge construction technology[J]. China Journal of Highway and Transport, 2018, 31 (12): 1-27.
[6] 王景全, 王震, 高玉峰, 等. 预制桥墩体系抗震性能研究进展: 新材料、新理念、新应用[J]. 工程力学, 2019, 36(3):1-23.
WANG Jingquan, WANG Zhen, GAO Yufeng, et al. Review on aseismic behavior of precast piers: new material, new concept, and new application [J]. Engineering Mechanics, 2019, 36 (3): 1-23.
[7] 高婧, 葛继平, 林铁良. 干接缝节段拼装桥墩拟静力试验研究[J]. 振动与冲击, 2011, 30(4): 211-216.
GAO Jing, GE Jiping, LIN Tieliang. Pseudo static test for pre-cast segmental bridge columns with dry joints[J]. Journal of Vibration and Shock, 2011, 30(4): 211-216.
[8] BU Z Y, OU Y C, SONG J W, et al. Hysteretic modeling of unbonded posttensioned precast segmental bridge columns with circular section based on cyclic loading test[J]. Journal of Bridge Engineering, 2016, 21(6):1-14.
[9] 司炳君, 谷明洋, 孙治国, 等. 近断层地震动下摇摆-自复位桥墩地震反应分析[J]. 工程力学, 2017, 34(10): 87-97.
SI Bingjun, GU Mingyang, SUN Zhiguo, et al. Seismic response analysis of the rocking self-centering bridge piers under the near-fault ground motions[J]. Engineering Mechanics, 2017, 34 (10): 87-97.
[10] 王志强, 张杨宾, 蒋仕持, 等. 套筒连接的预制拼装桥墩抗剪性能试验 [J]. 同济大学学报(自然科学版), 2018, 46(6): 767-775.
WANG Zhiqiang, ZHANG Yangbin, JIANG Shichi, et al. Experimental study of shear performance of precast segmental bridge piers with grouted splice sleeve [J]. Journal of Tongji University (Natural Science), 2018, 46 (6): 767-785.
[11] 葛继平, 王志强. 干接缝节段拼装桥墩振动台试验研究[J]. 工程力学, 2011, 28(9):122-128.
GE Jiping, WANG Zhiqiang. Shake table tests of segmental bridge columns with match-cast dry joints [J]. Engineering Mechanics, 2011, 28(9): 122-128.
[12] 葛继平, 闫兴非, 王志强. 灌浆套筒和预应力筋连接的预制拼装桥墩的抗震性能[J]. 交通运输工程学报, 2018, 18(2):42-52.
GE jiping, YAN Xingfei, WANG Zhiqiang. Seismic performance of prefabricated assembled pier with grouted sleeve and prestressed reinfrocements [J]. Journal of Traffic and Transportation Engineering, 2018, 18(2): 42-52.
[13] 王军文, 张伟光, 艾庆华. PC与RC空心墩抗震性能试验对比[J]. 中国公路学报, 2015, 28(4): 76-85.
WANG Junwen, ZHANG Weiguang, AI Qinghua. Comparative experiment on seismic performance of PC and RC hollow piers [J]. China Journal of Highway and Transport, 2015, 28 (4): 76-85.
[14] 王军文, 丁世广, 白维刚, 等. 装配式预应力桥墩地震损伤评估及影响参数分析[J]. 中国公路学报, 2018, 31(12): 258-266.
WANG Junwen, DING Shiguang, BAI Weigang, et al. Seismic damage assessment and influence parameter analysis of precast segmental prestressed piers [J]. China Journal of Highway and Transport, 2018, 31(12): 258-266.
[15] SIDERIS P, AREF A J, FILIATRAULT A. Quasi-static cyclic testing of a large-scale hybrid sliding-rocking segmental column with slip-dominant joints[J]. Journal of Bridge Engineering, 2014, 19(10): 04014036.
[16] SIDERIS P, AREF A J, FILIATRAULT A. Large-scale seismic testing of a hybrid sliding-rocking posttensioned segmental bridge system[J]. Journal of Structural Engineering, 2014, 140(6): 04014025.
[17] MANDER J B, CHENG C T, Seismic resistance of bridge piers based on damage avoidance design[R]. Buffalo: US National Center for Earthquake Engineering Research, 1997.
[18] OU Y C. Precast Segmental Post-tensioned concrete bridge columns for seismic regions[D]. Buffalo: State University of New York, 2007.
[19] OU Y C, TSAI M S, CHANG K C, et al. Cyclic behavior of precast segmental concrete bridge columns with high performance or conventional steel reinforcing bars as energy dissipation bars[J]. Earthquake Engineering & Structural Dynamics, 2010, 39(11):1181-1198.
[20] 吕西林, 陈云, 毛苑君. 结构抗震设计的新概念-可恢复功能结构[J]. 同济大学学报 (自然科学版), 2011, 39(7): 941-948.
LV Xilin, CHEN Yun, MAO Yuanjun. New concept of structural seismic design: earthquake resilient structures[J]. Journal of Tongji University (Natural Science), 2011, 39 (07): 941-948.
[21] CHOU C C, CHEN Y C. Cyclic Tests of post‐tensioned precast CFT segmental bridge columns with unbonded strands[J]. Earthquake engineering & structural dynamics, 2006, 35(2): 159-175.
[22] HEWES J T, PRIESTLEY M J N. Seismic design and performance of precast concrete segmental bridge columns[R]. 2002.
[23] ELGAWADY M A, SHA’LAN A. Seismic behavior of self-centering precast segmental bridge bents[J]. Journal of Bridge Engineering, 2010, 16(3): 328-339.
[24] 孙治国, 谷明洋, 司炳君, 等. 外置角钢摇摆-自复位双柱墩抗震性能分析[J]. 中国公路学报, 2017, 30(12): 40-49.
SUN Zhiguo, GU Mingyang, SI Bingjun, et al. Seismic behavior analyses of rocking self-centering double column bridge bents using external angles[J]. China Journal of Highway and Transport, 2017, 30 (12): 40-49.
[25] 韩强, 贾振雷, 何维利, 等. 自复位双柱式摇摆桥梁抗震设计方法及工程应用[J], 中国公路学报, 2017, 30(12):169-177.
HAN Qiang, JIA Zhenlei, HE Weili, et al. Seismic design method and its engineering application of self-centering double-column rocking bridge[J]. China Journal of Highway and Transport, 2017, 30 (12): 169-177.
[26] 何维利, 肖永铭, 贾振雷, 等. 基于性能的无支座自复位桥梁抗震设计[J], 特种结构, 2018, 35(5): 32-40.
HE Weili, XIAO Yongming, JIA Zhenlei, et al. Seismic design of performance-based self-centering bridge without bearing[J], Special Structures, 2018, 35 (5): 32-40.
[27] 赵建瑜. 自复位预制节段拼装桥墩抗震性能研究[D]. 北京:北京工业大学, 2018.
ZHAO Jianyu. Seismic performance of self-centering segmental precast bridge columns[D]. Beijing: Beijing University of technology, 2018.
[28] WANG J C, OU Y C, CHANG K C, et al. Large‐scale seismic tests of tall concrete bridge columns with precast segmental construction[J]. Earthquake Engineering & Structural Dynamics, 2008, 37(12): 1449-1465.
[29] 贾俊峰, 赵建瑜, 张强, 等. 后张预应力节段拼装 CFST 桥墩抗侧力学行为试验[J]. 中国公路学报, 2017, 30(3): 236-245.
JIA Junfeng, ZHAO Jianyu, ZHANG Qiang, et al. Experiment on lateral bearing behavior of post-tensioned segmental CFST bridge pier columns[J]. Journal of China highway, 2017, 30 (3): 236-245.
[30] JRA (Japan Road Association). 2012. Design specifications of highway bridges. Part V: Seismic design. JRA-2012. Tokyo: JRA

PDF(3356 KB)

Accesses

Citation

Detail

段落导航
相关文章

/