为研究大跨混凝土斜拉桥施工过程中结构的断索动力响应,以湖南赤石特大桥火灾后九根拉索断裂的事故为背景,采用有限元软件建立了赤石特大桥的非线性动力实体有限元分析模型,通过对比灾后检测得到的索力、主梁和索塔位移及裂缝开展情况与有限元模型中相应的计算结果,证明了模型的有效性。基于已验证的有限元模型,对斜拉桥结构在多根拉索断裂过程中的动力响应进行了分析。结果表明:(1)拉索静态断裂只会对断索区域附近的截面内力和索力造成影响,而拉索骤断引起的冲击作用则会导致全桥结构都产生较大内力变化;(2)单侧索面部分拉索断裂导致主梁顶板及腹板受到扭矩和双向弯矩的共同作用而产生大量裂缝,裂缝在第五根拉索断裂后出现;(3)主梁扭矩、竖向弯矩和横向弯矩最不利截面在断索过程中的动力放大系数分别在1.09~1.55、1.21~2.05及1.21~1.76之间,最大主压应力动力放大系数在1.02~1.58之间;(4)预应力筋及拉索最大拉应力的动力放大系数分别在1~1.9及1.05~1.4之间;(5)索塔塔顶位移动力放大系数在1.23~1.65之间。
Abstract
To study the dynamic response of a long-span cable-stayed bridge to cable loss during construction, the structural behavior of the Chishi Bridge subjected to nine-cable loss caused by a fire accident was investigated in detail by dynamic nonlinear finite element simulation. The cable tension, and the displacements and damage state in the girder and pylon were measured to verify the finite element model. A comprehensive numerical study was then conducted to analyze the dynamic behavior of the cable-stayed bridge throughout the multiple-cable loss process. The results showed that: (1) the obvious change in the internal force of structure occur in only the remaining cables and part of girder within and around the cable loss area when the cable statically broken, whereas the dynamic loss of a cable cause significant responses on the entire bridge structure; (2) the loss of nine cables in the local area cause the combined action of torsion and biaxial bending in the girder, and result in dense distribution of diagonal cracks in the top slab and box girder webs, the concrete cracking may occur after the loss of five cables; (3) the dynamic amplification factors (DAF) of the maximum torque, longitudinal and transverse bending moment of girder during the accident are 1.09-1.55, 1.21-2.05 and 1.21-1.76, respectively, the DAF of maximum principal compressive stress is ranged from 1.02 to 1.58; (4) the DAF of the tensile stresses in the prestressed tendons and remaining cables are 1-1.9 and 1.05-1.4, respectively; (5) the DAF of the longitudinal displacement of the pylon top is ranged from 1.23 to 1.65.
关键词
斜拉桥 /
动力响应 /
有限元分析 /
拉索断裂 /
动力放大系数
{{custom_keyword}} /
Key words
cable-stayed bridge /
dynamic response /
finite element analysis /
cable loss /
dynamic amplification factor
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] STAROSSEK U. Typology of progressive collapse[J]. Engineering Structures, 2007, 29(9): 2302-2307.
[2] 蔡建国,王蜂岚,冯健.大跨空间结构抗连续性倒塌概念设计[J].建筑结构学报,2010(S1):283-287.
CAI Jian-guo, WANG Feng-lan, FENG Jiang. Concept design of progressive collapse for long-span space structures[J]. Journal of Building Structures, 2010 (S1): 283-287.
[3] 于刚,孙利民.断索导致的斜拉桥结构易损性分析[J].同济大学学报(自然科学版),2010,38(3):323-328.
YU Gang, SUN Li-ming. Vulnerability analysis of cable-stayed bridge due to cable failures[J]. Journal of Tongji University(Natural Science), 2010, 38 (3): 323-328.
[4] 郑小博,赵煜,贺拴海,等.双塔钢桁斜拉桥结构强健性计算方法[J].交通运输工程学报,2017,17(5):27-38.
ZHENG Xiao-bo, ZHAO Yu, HE Shuan-hai, et al. Calculating method of structural robustness of double-tower cable-stayed bridge with steel truss girder[J]. Journal of Traffic and Transporting Engineering, 2017, 17(5): 27-38.
[5] 吕文高.拉索锈蚀对极端作用下大跨斜拉桥失效行为的非线性影响分析[D].大连:大连理工大学,2018.
[6] PTI DC45.1-12. Recommendations for stay cable design, testing and installation[S]. Phoenix: Cable-Stayed Bridges Committee, 2012.
[7] SETRA. Recommandations de la Commission Interministérielle de la Précontrainte[S]. Francia: Service d'Etudes Techniques des Routes et Autoroutes, 2001.
[8] WOLFF M, STAROSSEK U. Cable loss and progressive collapse in cable-stayed bridges[J]. Bridge Structures, 2009, 5(1): 17-28.
[9] MOZOS C M, APARICIO A C. Parametric study on the dynamic response of cable stayed bridges to the sudden failure of a stay, part I: Bending moment acting on the deck[J]. Engineering Structures, 2010, 32(10): 3288-3300.
[10] MOZOS C M, APARICIO A C. Parametric study on the dynamic response of cable stayed bridges to the sudden failure of a stay, part II: Bending moment acting on the pylons and stress on the stays[J]. Engineering Structures, 2010, 32(10): 3301-3312.
[11] CAI J G, XU Y X, ZHUANG L P, et al. Comparison of various procedures for progressive collapse analysis of cable-stayed bridges[J]. Journal of Zhejiang University SCIENCE A, 2012, 13(5): 323-334.
[12] ZHOU Y, CHEN S. Numerical investigation of cable breakage events on long-span cable-stayed bridges under stochastic traffic and wind[J]. Engineering Structures, 2015, 105: 299-315.
[13] ZHOU Y, CHEN S. Framework of nonlinear dynamic simulation of long-span cable-stayed bridge and traffic system subjected to cable-loss incidents[J]. Journal of Structural Engineering, 2016, 142(3): 04015160
[14] HOANG V, KIYOMIYA O, AN T. Experimental and dynamic response analysis of cable-stayed bridge due to sudden cable loss[J]. 構造工学論文集 A, 2016, 62: 50-60.
[15] JTG/T 3360-01-2018.公路桥梁抗风设计规范[S].北京:人民交通出版社,2018.
[16] GIMSING N J, GEORGAKIS C T. Cable supported bridges: Concept and design[M]. New York: John Wiley & Sons, 2011.
[17] 韩振峰,叶爱君,范立础.千米级斜拉桥的动力几何非线性分析[J].土木工程学报,2010(6):67-73.
HAN Zhen-feng, YE Ai-jun, FAN Li-chu. Dynamic nonlinear analysis of cable-stayed bridges of kilometers length[J]. China Civil Engineering Journal, 2010(6): 67-73.
[18] ZHOU Y, CHEN S. Reliability assessment framework of the long-span cable-stayed bridge and traffic system subjected to cable breakage events[J]. Journal of Bridge Engineering, 2016, 22(4): 04016133.
[19] LUBLINER J, OLIVER J, OLLER S, et al. A plastic-damage model for concrete[J]. International Journal of Solids and Structures, 1989, 25(3): 299-326.
[20] LEE J, FENVES G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 8(892): 892-900.
[21] 聂建国,王宇航.ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J].工程力学,2013(4):69-77.
NIE Jian-guo, WANG Yu-hang. Comparison study of constitutive model of concrete in abaqus for static analysis of structures[J]. Engineering Mechanics, 2013(4): 69-77.
[22] 郝军刚,胡蕾,伍鹤皋,等.罕遇地震作用下水电站厂房上部结构破坏模式研究[J].振动与冲击,2016,35(3): 55-61.
HAO Jun-gang, HU Lei, WU He-gao, et al. Study on failure mode of hydropower house superstructure under rare earthquake action[J]. Journal of vibration and shock, 2016, 35(3): 55-61.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}