[1] 雷亚国, 贾峰, 周昕, et al. 基于深度学习理论的机械装备大数据健康监测方法[J]. 机械工程学报, 2015, v.51(21):55-62.
Lei Yaguo, Jia Feng, Zhou Xin, et al. Big data health monitoring method of mechanical equipment based on deep learning theory [J]. Journal of Mechanical Engineering, 2015, v.51 (21): 55-62.
[2] 胥永刚,孟志鹏,陆明.基于双树复小波包变换和SVM的滚动轴承故障诊断方法[J].航空动力学报,2014,29(01):67-73.
Xu Yonggang, Meng Zhipeng, Lu Ming. Rolling bearing fault diagnosis method based on dual-tree complex wavelet packet transform and SVM [J] .Aerodynamics, 2014,29 (01): 67-73.
[3] 乔美英,刘宇翔,兰建义.基于VMD和马氏距离SVM的滚动轴承故障诊断[J].中山大学学报(自然科学版),2019,58(05):8-16
Qiao Meiying, Liu Yuxiang, Lan Jianyi. Fault diagnosis of rolling bearings based on VMD and Mahalanobis distance SVM [J] .Journal of Sun Yat-sen University (Natural Science Edition), 2019,58 (05): 8-16
[4] Y. G. Lei, Z. J. He, and Y. Y. Zi, ‘‘Application of an intelligent classification method to mechanical fault diagnosis,’’ Expert Syst. Appl., vol. 36, no. 6, pp. 9941–9948, 2009.
[5] Shao H , Jiang H , Zhang X , et al. Rolling bearing fault diagnosis using an optimization deep belief network[J]. Measurement Science & Technology, 2015, 26(11):115002.
[6] 王奉涛,邓刚,王洪涛,于晓光,韩清凯,李宏坤.基于EMD和SSAE的滚动轴承故障诊断方法[J].振动工程学报,2019,32(02):368-376.
Wang Fengtao, Deng Gang, Wang Hongtao, Yu Xiaoguang, Han Qingkai, Li Hongkun. Rolling bearing fault diagnosis method based on EMD and SSAE [J]. Journal of Vibration Engineering, 2019,32 (02): 368-376.
[7] Chen Z , Li W . Multisensor Feature Fusion for Bearing Fault Diagnosis Using Sparse Autoencoder and Deep Belief Network[J]. IEEE Transactions on Instrumentation & Measurement, 2017:1-10.
[8] Long, Wen, Xinyu, et al. A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method[J]. IEEE Transactions on Industrial Electronics, 2017.
[9] Lu C , Wang Y , Ragulskis M , et al. Fault Diagnosis for Rotating Machinery: A Method based on Image Processing[J]. PLoS ONE, 2016, 11(10):e0164111.
[10] 刘炳集,熊邦书,欧巧凤,陈新云.基于时频图和CNN的滚动轴承故障诊断[J].南昌航空大学学报(自然科学版),2018,32(02):86-91.
Liu Bingji, Xiong Bangshu, Ou Qiaofeng, Chen Xinyun. Fault diagnosis of rolling bearing based on time-frequency graph and CNN [J] .Journal of Nanchang Hangkong University (Natural Science Edition), 2018,32 (02): 86-91.
[11] Udmale S S , Patil S S , Phalle V M , et al. A bearing vibration data analysis based on spectral kurtosis and ConvNet[J]. Soft Computing A Fusion of Foundations Methodologies & Applications, 2018.
[12] Wang Z , Oates T .Imaging Time-Series to Improve Classification and Imputation[J]. 2015.
[13] Feri Setiawan, Bernardo Nugroho Yahya Deep activity recognition on imaging sensor data[J] ELECTRONICS LETTERS,2019,PP 928–931.
[14] 薛宇航. 基于卷积神经网络的中介轴承故障诊断研究[D].大连理工大学,2019.
Xue Yuhang. Research on Fault Diagnosis of Intermediate Bearings Based on Convolutional Neural Network [D] .Dalian University of Technology, 2019.
[15] 曹戈. 基于深度卷积神经网络的人脸图像分类应用研究[D].吉林大学,2019.
Cao Ge. Application of face image classification based on deep convolutional neural network [D] .Jilin University, 2019.
[16] 文铭. 基于深度神经网络的语音识别前端处理[D].中国科学技术大学,2019.
Wen Ming. Front-end processing of speech recognition based on deep neural network [D] .University of Science and Technology of China, 2019.
[17] Krizhevsky A , Sutskever I , Hinton G . ImageNet Classification with Deep Convolutional Neural Networks[C]// NIPS. Curran Associates Inc. 2012.
[18] Kingma D , Ba J.Adam: A Method for Stochastic Optimization[J]. Computer Science, 2014.
[19] Case Western Reserve University Bearing Data Center[EB/
OL]. 2018. https:// cse groups. case. edu/ bearing data center/ pages/ download- data- file.
[20] Akata Z , Perronnin F , Harchaoui Z , et al. Label-Embedding for Image Classification[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 38(7):1425-1438.
[21] Huang Z , Xie Y . Fault Diagnosis Method of Rolling Bearing Based on BP Neural Network[C]// International Conference on Measuring Technology & Mechatronics Automation. IEEE Computer Society, 2009.
[22] Wang L , Hope A D . Bearing fault diagnosis using multi-layer neural networks[J]. Insight - Non-Destructive Testing and Condition Monitoring, 2004, 46(8):451-455