基于动网格技术的串并联囊式压力脉动衰减器的特性研究

辛清1,张永祥1,朱群伟2,杨芮3

振动与冲击 ›› 2021, Vol. 40 ›› Issue (5) : 254-260.

PDF(1585 KB)
PDF(1585 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (5) : 254-260.
论文

基于动网格技术的串并联囊式压力脉动衰减器的特性研究

  • 辛清1,张永祥1,朱群伟2,杨芮3
作者信息 +

Characteristics of series-parallel cystic pressure pulsation attenuator based on dynamic mesh technology

  • XIN Qing1, ZHANG Yongxiang1, ZHU Qunwei2, YANG Rui3
Author information +
文章历史 +

摘要

针对无法定量分析计算囊式衰减器衰减效果的问题,以某囊式衰减器为研究对象,运用动网格技术结合用户自定义函数(UDF)对串联和并联式衰减器进行数值计算。克服了有限元流体计算中的发散问题和动网格更新过程中的负体积问题,在不同的脉动频率下,对囊式衰减器进行动态模拟,结果表明,串联式衰减器对压力脉动的衰减效果优于并联式;流体脉动频率与衰减器固有频率一致时衰减效果最好,最佳衰减率可达85%以上。仿真结果与实验结果基本吻合,验证了仿真模型的有效性和实用性,为提高囊式衰减器的衰减性能,也为变边界问题的分析研究提供了新的方法和思路。

Abstract

To solve the problem that the attenuation effect of the bladder pressure pulsation attenuator can not be quantitatively analyzed, a bladder pressure pulsation attenuator was taken as the research object, and the dynamic mesh technology was combined with the User-Defined-Function (UDF) to calculate the serial and parallel attenuators. Overcoming the divergence problem in finite-element fluid calculation and the negative volume problem in dynamic mesh updating process, the bladder pressure pulsation attenuator was dynamically simulated under different fluctuating frequencies. The results show that serial attenuator attenuates pressure pulsation better than parallel one does, especially when the fluid fluctuation frequency is consistent with attenuator's natural frequency. The optimal attenuation rate can reach more than 85%. The simulation results match the experimental results, that verifies the model's validity and practicability, and also provides a new method and idea to improve bladder attenuator's perfomance and analyze the variable boundary problem.

关键词

动网格技术 / 串联式衰减器 / 并联式衰减器 / 压力脉动

Key words

dynamic mesh technology / serial attenuator / parallel attenuator / pressure pulsation

引用本文

导出引用
辛清1,张永祥1,朱群伟2,杨芮3. 基于动网格技术的串并联囊式压力脉动衰减器的特性研究[J]. 振动与冲击, 2021, 40(5): 254-260
XIN Qing1, ZHANG Yongxiang1, ZHU Qunwei2, YANG Rui3. Characteristics of series-parallel cystic pressure pulsation attenuator based on dynamic mesh technology[J]. Journal of Vibration and Shock, 2021, 40(5): 254-260

参考文献

[1]  Li Hao, Zhu Yuanhao, Xin Yuhua. Modeling and simulation of a hydro-pneumatic accumulator system for hybrid air development[J]. Applied Mechanics and Materials, 2015, 733(2): 763-767.
[2] Jia-han Bao. Researches on the Energy Regeneration and Vibration Reduction Performance of a New Hydraulic Energy Regenerative Suspension[A]. IEEE Beijing Section.Proceedings of 2014 International Conference on Industrial Engineering and Information Technology[C]. IEEE Beijing Section: IEEE BEIJING SECTION, 2014: 5.
[3] 李爱社,闫祥安,王懋瑶. 球形液压滤波器滤波机理的研究[J]. 机床与液压,1995(06): 340-344.
    Li aishe, Yan Xiangan, Wang Maoyao. Research on the filter mechanism of spherical hydraulic filter[J]. Machine Tool & Hydraulics, 1995(06): 340-344.
[4] 焦秀稳,曹玉平,张承谱,等. 球形液压滤波器滤波机理分析及仿真[J].天津大学学报,1996(01):130-137.
Jiao Xiuwen, Cao Yuping, Zhang chengpu, et al. Analysis and simulation of the filter mechanism of spherical hydraulic filter [J].  Journal of Tianjin University, 1996(01): 130-137.
[5] Eiichi Kojima, Takayoshi Ichiyanagi. Research on Pulsation Attenuation Characteristics of Silencers in Practical Fluid Power Systems[J]. International Journal of Fluid Power, 2000, 1(2): 29-38. 
[6] 谢坡岸,王强. 蓄能器对管路流体脉动消减作用的研究[J].噪声与振动控制,2000(04): 2-5.
Xie Paoan, Wang Qiang. Study on the effect of accumulator on reducing fluid pulsation in pipeline [J]. Noise and Vibration Control, 2000(04): 2-5.
[7] 杨小聪. 流-固耦合共振式液压滤波器性能研究[J]. 流体传动与控制,2010(05): 10-12.
Yang Xiaocong. Fluid-solid coupling resonance hydraulic filter performance study [J]. Fluid transmission and control, 2010(05): 10-12.
[8] 何志勇,何清华,李自光. 液压系统振动抑制方法研究[J].煤矿机械,2010,31(09): 53-55.
He Zhiyong, He Qinghua, Li Ziguang. Study on vibration suppression method of hydraulic system [J]. Coal Mine Machinery, 2010, 31(09): 53-55.
[9] 何志勇,何清华,贺尚红,等. 基于流体-结构耦合振动的液压脉动滤波器试验研究[J]. 中国造船,2012,53(01): 137-144.
He Zhiyong, He Qinghua, He Shanghong, et al. Experimental study on hydraulic pulsation filter based on fluid-structure coupled vibration [J]. China shipbuilding, 2012, 53(01): 137-144.
[10] Zhiyong He, Qinghua He. Study of Pressure Pulsations Attenuation in Hydraulic System[J]. Advanced Materials Research, 2010: 1040-1043.
[11] Lingyun Chai. A Compact Design of Pulsation Attenuator for Hydraulic Pumps[A]. Proceedings of 2016 IEEE/CSAA International Conference on Aircraft Utility Systems(AUS)[C].  2016:6.
[12] 赵卫,叶骞. 新型复式皮囊蓄能器热力学系统分析[J]. 系统仿真学报, 2017, 29(12): 3149-3159.
Zhao Wei, Ye Qian. Thermodynamic system analysis of a new compound skin accumulator [J]. Journal of System Simulation, 2017, 29(12): 3149-3159.
[13] Z.-L. Ji, J.-Z. Sha. A BOUNDARY ELEMENT APPROACH TO SOUND TRANSMISSION/RADIATION PROBLEMS[J].  Journal of Sound and Vibration, 1997, 206(2): 261-265.
[14] Z.L. Ji. Boundary element acoustic analysis of hybrid expansion chamber silencers with perforated facing[J].  Engineering Analysis with Boundary Elements, 2010, 34(7): 690-696.
[15] 李强,张硕,许伟伟. 基于3D瞬态流场计算的滑动轴承非线性油膜力分析[J]. 振动与冲击,2018,37(20):141-147.
Li Qiang, Zhang Shuo, Xu Weiwei. Nonlinear oil film force analysis of sliding bearing based on 3D transient flow field calculation [J]. Vibration and impact, 2008,37(20):141-147.
[16] 陈来荣. 航空发动机中冰片运动轨迹的数值模拟研究[D].南京航空航天大学,2015.
Chen Lairong. Numerical simulation of borneol trajectory in aero engine [D]. Nanjing university of aeronautics and astronautics,2015.
[17] 仲继泽,徐自力. 基于动网格降阶算法的机翼颤振边界预测[J].振动与冲击,2017,36(04):185-191.
Zhong Jize, Xu Zili. Prediction of wing flutter boundary based on dynamic mesh reduction algorithm [J]. Vibration and impact,2017,36(04):185-191.
[18] 陈皓. 倾转旋翼机过渡模式下非定常气动力数值模拟[D].南京航空航天大学,2018.
Chen Hao. Unsteady aerodynamic numerical simulation of tilt-rotor aircraft in transition mode [D]. Nanjing university of aeronautics and astronautics,2018.
[19] 欧益宏,李润,袁广强,李国庆,王世茂.基于流固耦合的立式拱顶储罐油气爆炸数值模拟[J].振动与冲冲,2018,37(22):231-237+268.
Ou Yihong, Li run, Yuan Guangqiang, Li Guoqing, Wang Shimao. Numerical simulation of oil and gas explosion in vertical vaults based on fluid-solid coupling [J]. Vibration and impact, 2008,37(22):231-237+268.
[20] Triet Hung Ho, Kyoung Kwan Ahn. Modeling and simulation of hydrostatic transmission system with energy regeneration using hydraulic accumulator[J]. Journal of Mechanical Science and Technology, 2010, 24(5): 1163-1175.
[21] Norio Nakazawa, Yoichiro Kono, Eijiro Takao ,et al. Development of a Braking Energy Regeneration System for City Buses [J]. SAE Transactions, 1987, Vol.96: 1050-1060.
[22] 毕超,陈正茂,张立斌,等. 气囊式液压蓄能器的数学模型与仿真分析[J]. 航天制造技术,2017(02): 11-15+43.
Bi Chao, Chen Zhengmao, Zhang Libin, et al. Mathematical model and simulation analysis of airbag hydraulic accumulator [J]. Aerospace manufacturing technology, 2017(02): 11-15+43.
[23] 王福军. 计算流体动力学分析:CFD软件原理与应用[M].
北京:清华大学出版社,2004.
Wang Fujun. Computational fluid dynamics analysis: principles and applications of CFD software [M]. Beijing: tsinghua university press, 2004.
[24] 李浪,王海涛,龚烈航. 皮囊式蓄能器吸收压力脉动的参数分析与试验[J]. 液压与气动,2012(07): 3-6.
Li lang, Wang haitao, Gong lihang. Parameter analysis and test of pressure pulsation absorption of skin accumulator [J]. Chinese hydraulics & pneumatics, 2012(07): 3-6.
 

PDF(1585 KB)

Accesses

Citation

Detail

段落导航
相关文章

/