移动下击暴流作用下高层建筑风荷载特性研究

方智远1,汪之松1,2,李正良1,2,黄汉杰3

振动与冲击 ›› 2021, Vol. 40 ›› Issue (5) : 283-289.

PDF(2875 KB)
PDF(2875 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (5) : 283-289.
论文

移动下击暴流作用下高层建筑风荷载特性研究

  • 方智远1,汪之松1,2,李正良1,2,黄汉杰3
作者信息 +

Wind load characteristics of tall buildings under moving downburst

  • FANG Zhiyuan1, WANG Zhisong1,2, LI Zhengliang1,2, HUANG Hanjie3
Author information +
文章历史 +

摘要

为研究移动下击暴流作用下高层建筑的风荷载特性,采用可移动的冲击射流装置对高层建筑模型进行了测压试验,并通过计算流体力学方法进行数值模拟,分析了风暴移动过程中,风场中不同位置的高层建筑模型表面风压分布特性及风荷载作用机理。结果表明:风暴的移动会使风暴前缘风速加强,而使后缘风速减弱,从而使建筑表面的整体风压出现相应变化。当建筑位于风暴移动中心线上时,气流分离形成的漩涡主要出现在顶面迎风侧前沿及侧面迎风侧上角部区域,这些区域负压相对较大;建筑顶面在风暴经过时会产生较大正压。当建筑位于风暴移动中心线外时,高层建筑的来流风风向会随风暴的移动而不断发生变化;当建筑位于风暴前缘时,与来流风夹角较小的侧面会由于气流在钝体边缘的分离作用而出现较大的负压区域;当建筑位于风暴后缘时,建筑顶面角部区域会由于锥形涡的产生而出现较大负压。

Abstract

In order to study the wind load characteristics of high-rise buildings under moving downburst, a pressure test was carried out on a high-rise building model by using a movable impinging jet device, and the numerical simulation was carried out by using computational fluid dynamics (CFD) method. The distribution characteristics of wind pressure on the surfaces of high-rise building model at different locations in the wind field and the mechanism of wind load during the storm movement were analyzed. The results show that the wind speed of the front flank downburst will be strengthened and those of the rear flank downburst will be weakened by the storm movement, thus making the overall wind pressure on the building surface change accordingly. When the building is located on the center line of storm movement, the eddies formed by the separation of airflow mainly occur in the front of the windward side of the top surface and the upper corner of the windward side of the side surface. These areas have relatively large negative pressure, and the top surface of the building will generate relatively large positive pressure when the storm passes. When the building is located outside the center line of storm movement, the wind direction of high-rise buildings will change with the storm movement. When the building is located at the front flank downburst, the side surface with a smaller angle to the wind will appear a larger negative pressure area due to the separation of the air flow at the edge of the bluff body. When the building is located at the rear flank downburst, the corner area on the top of the building will have a larger negative pressure due to the conical vortex.

关键词

移动下击暴流 / 高层建筑 / 冲击射流 / 大涡模拟 / 风压系数

Key words

 moving downburst / high-rise building / impinging jet / large eddy simulation / wind pressure coefficients

引用本文

导出引用
方智远1,汪之松1,2,李正良1,2,黄汉杰3. 移动下击暴流作用下高层建筑风荷载特性研究[J]. 振动与冲击, 2021, 40(5): 283-289
FANG Zhiyuan1, WANG Zhisong1,2, LI Zhengliang1,2, HUANG Hanjie3. Wind load characteristics of tall buildings under moving downburst[J]. Journal of Vibration and Shock, 2021, 40(5): 283-289

参考文献

[1] 孔锋, 郭君, 王一飞, 等. 近56年来中国雷暴日数的时空分异特征[J]. 灾害学, 2018, 33( 3) : 87 - 95. (KONG Feng,GUO Jun,WANG Yifei,et al. Spatial and temporal variation characteristics of thunderstorm days in China in recent 56 years[J]. Journal of Catastrophology,2018,33( 3) : 87 - 95. (in Chinese))
[2] Proctor F H . Numerical Simulations of an Isolated Microburst. Part I: Dynamics and Structure[J]. Journal of the Atmospheric Sciences, 1988, 45(21):3137-3160.
[3] Fujita T T. Manual of downburst identification of project NIMROD [R]. SMRP Research Paper 156, University of Chicago, 104 [NTIS PB85-148880], 1978.
[4] Letchford C W, Mans C, Chay M T. Thunderstorms—their importance in wind engineering (a case for the next generation wind tunnel)[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2002, 90(12):1415-1433.
[5] Zhang Y , Hu H , Sarkar P P . Comparison of microburst-wind loads on low-rise structures of various geometric shapes[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 133:181-190.
[6] Zhang Y , Sarkar P , Hu H . An experimental study on wind loads acting on a high-rise building model induced by microburst-like winds[J]. Journal of Fluids and Structures, 2014, 50:547-564.
[7] 陈勇, 崔碧琪, 余世策,等. 雷暴冲击风作用下球壳型屋面模型风压特性试验研究[J]. 建筑结构学报, 2011, 32(8):26-33. (CHEN Yong, CUI Biqi, YU Shice, et al. Experimental investigation of spherical roof subjected to thunderstorm downbursts[J]. Journal of Building Structures, 2011, 32(8): 26-33. (in Chinese))
[8] 汪之松, 左其刚, 唐伟峰,等. 稳态冲击射流作用下平地及坡地高层建筑的风荷载特性[J]. 建筑结构学报, 2017, 38(3):103-110. (WANG Zhisong, ZUO Qigang, TANG Weifeng, et al. Wind load characteristics for high-rise building on flat terrain and slope under steady-state impinging jet[J]. Journal of Building Structures, 2017, 38(3): 103-110. (in Chinese))
[9] Letchford C W, Chay M T. Pressure distributions on a cube in a simulated thunderstorm downburst—Part B: moving downburst observations [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(7): 733-753.
[10] 王超, 汪之松, 李正良. 冲击射流与壁面射流风剖面特征比较和影响因素参数化分析[J]. 工程力学, 2015, 32(11):86-93. (WANG Chao, WANG Zhisong, LI Zhengliang. Comparison and parametric analysis of wind profile characteristics of imping jet and wall jet[J]. Engineering Mechanics, 2015, 32(11): 86-93. (in Chinese))
[11] Zhang Y , Hu H , Sarkar P P . Modeling of microburst outflows using impinging jet and cooling source approaches and their comparison[J]. Engineering Structures, 2013, 56(Complete):779-793.
[12] IVAN, M. A ring-vortex downburst model for flight simulations[J]. Journal of Aircraft, 1986, 23(3):232-236.
[13] 方智远, 李正良,汪之松. 风暴移动对下击暴流风场特性的影响研究[J]. 建筑结构学报, 2019, 40(6):166-174.
(FANG Zhiyuan, LI Zhengliang, WANG Zhisong. Study on effect of storm movement on wind field characteristics of downburst [J]. Journal of Building Structures, 2017, 38(3): 103-110. (in Chinese))
[14] 汪之松,武彦君,方智远. 移动效应的下击暴流风场特性分析[J]. 振动与冲击, 2019, 38(3):32-38. (WANG Zhisong, WU Yanjun, FANG Zhiyuan. Downburst wind field characteristics under moving effect [J]. Journal of Vibration and Shock, 2019, 38(3):32-38. (in Chinese))

PDF(2875 KB)

376

Accesses

0

Citation

Detail

段落导航
相关文章

/