[1] Yang Z, Yu Z, Xie C, et al. Application of Hilbert–Huang Transform to acoustic emission signal for burn feature extraction in surface grinding process[J]. Measurement, 2014, 47(1): 14-21.
[2] 陈果. 滚动轴承早期故障的特征提取与智能诊断[J]. 航空学报, 2009, 30(2):362-367.
CHEN Guo, Feature Extraction and Intelligent Diagnosis of Early Failure of Rolling Bearings [J]. Journal of Aviation, 2009, 30(2): 362-367.
[3] 徐敏强, 黄文虎, 张嘉钟. 旋转机械高速启动过程振动信号分析方法的研究[J]. 振动工程学报, 2000, 13(2): 216-221.
XU Min-qiang, HUANG Wen-hu, ZHANG Jia-zhong. Research on Vibration Signal Analysis Method of Rotating Machinery in High Speed Start Process [J]. Journal of Vibration Engineering, 2000, 13(2): 216-221.
[4] 段艳杰, 吕宜生, 张杰,等. 深度学习在控制领域的研究现状与展望[J]. 自动化学报, 2016, 42(5):643-654.
DUAN Yan-jie, LV Yi-sheng, ZHANG Jie, et al. Research status and prospects of deep learning in the field of control [J]. Journal of Automation, 2016, 42(5): 643-654.
[5] Chen D , Cao X , Wen F , et al. Blessing of Dimensionality: High-Dimensional Feature and Its Efficient Compression for Face Verification[C]// IEEE Conference on Computer Vision & Pattern Recognition. IEEE, 2013.
[6] Mbo'O C P , Hameyer K . Bearing damage diagnosis by means of the linear discriminant analysis of stator current feature[C]// IEEE International Symposium on Diagnostics for Electrical Machines. IEEE, 2015.
[7] WANG Xing-qing, LI Yan-feng, TING Rui, et al. Bearing fault diagnosis method based on Hilbert envelope spectrum and deep belief network[J]. Journal of Vibroengineering, 2015, 17(3): 1295-1308.
[8] 张芳芳, 贺娟, 李明军. 基于导数优化的BP学习算法的研究综述[J]. 计算机应用研究, 2009, 026(003):809-813.
ZHANG Fang-fang, HE Juan, LI Ming-jun, Overviews on research of back-propagation algorithm based on derivative optimization[J]. Research on computer application, 2009, 026(003):809-813.
[9] Li C, Zurita G, Cerrada M, et al. Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis[J]. Neurocomputing, 2015, 168(C):119-127.
[10] Shao H, Jiang H, Zhang X, et al. Rolling bearing fault diagnosis using an optimization deep belief network[J]. Measurement Science & Technology, 2015, 26(11): 115002
[11] Bhadane M, Ramachandran K I. Bearing fault identification and classification with convolutional neural network[C]// International Conference on Circuit, power and Computing Technologies. IEEE, 2017:1-5.
[12] Jeong H, Park S, Woo S, et al. Rotating Machinery Diagnostics Using Deep Learning on Orbit Plot Images [J]. Procedia Manufacturing, 2016, 5:1107-1118.
[13] ZHANG Wei, PENG Gao-liang, LI Chuan-hao. Advances in Intelligent Information Hiding and Multimedia Signal Processing[M], Taiwan, Springer, 2016:77-84
[14] Huang H B, Huang X R, Li R X, Et Al. Sound quality prediction of vehicle interior noise using deep belief networks[J]. Applied Acoustics, 2016, 113: 149-161.
[15] Tamilselvan P, Wang P. Failure diagnosis using deep belief learning based health state classification[J]. Reliability Engineering & System Safety, 2013, 115(7): 124-135.
[16] 陈淑梅,余建波.卷积神经网络多变量过程特征学习与故障诊断[J/OL].哈尔滨工业大学学报:1-11[2020-03-23].
[17] Schroff Florian, Kalenichenko D, Philbin J. FaceNet: A unified embedding for face recognition and clustering[J]. 2015:815-823.
[18] 王梦阳, 王华庆, 董方. 基于EVMD-LNMF的复合故障信号分离方法[J]. 振动与冲击, 2019(16).
Wang Meng-yang, Wang Qin-hua, Dong fang. Compound Fault Signal Separation Method Based on EVMD-LNMF[J]. Vibration and shock, 2019(16).
[19] LIU Hong-mei, LI Lian-feng, MA Jian. Rolling Bearing Fault Diagnosis Based on STFT-Deep Learning and Sound Signals[J]. Shock and Vibration, 2016:1-12.
[20] WANG Li-hua, ZHAO Xiao-ping, WU Jia-xin, et al. Motor Fault Diagnosis Based on Short-time Fourier Transform and Convolutional Neural Network[J]. Chinese Journal of Mechanical Engineering, 2017, 30(6): 1357-1368.
[21] ZHAO Xiao-ping, WU Jia-xin, ZHANG Yong-hong, SHI Yun-qing, WANG Li-hua. Fault diagnosis of motor in frequency domain signal by stacked de-noising auto-encoder. Computers, Materials & Continua, 2018, vol. 57, no. 2, pp. 223-242.