载体加速度对静电驱动微机械陀螺响应的影响分析

张利娟1, 2,张华彪3,李欣业1,王雅雪1,于涛1

振动与冲击 ›› 2021, Vol. 40 ›› Issue (5) : 55-62.

PDF(1136 KB)
PDF(1136 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (5) : 55-62.
论文

载体加速度对静电驱动微机械陀螺响应的影响分析

  • 张利娟1, 2,张华彪3,李欣业1,王雅雪1,于涛1
作者信息 +

Effect of carrier acceleration on response of electrostatically driven MEMS gyroscope

  • ZHANG Lijuan1,2, ZHANG Huabiao3, LI Xinye1, WANG Yaxue1, YU Tao1
Author information +
文章历史 +

摘要

载体的运动会导致微机械陀螺的响应发生变化,因而引起测量误差,甚至导致系统故障。本文针对载体运动对微机械陀螺响应的影响开展研究。考虑载体运动以及微陀螺的非线性支承刚度和非线性静电力,基于拉格朗日方程建立了系统的动力学方程。利用谐波平衡法结合留数定理求解了含分式非线性项的系统的周期响应,研究了载体加速度对系统响应特性的影响,发现驱动方向的载体加速度主要导致系统的灵敏度降低。检测方向的载体加速度除使得系统灵敏度降低,还会导致零偏,且零偏和加速度的大小成正比,但比例系数与驱动电压无关。驱动电压较小时,载体在检测方向较小的加速度对灵敏度和非线性度影响很小;而在驱动电压或者检测方向加速度较大时,系统的灵敏度急剧下降,且非线性度也发生了剧烈变化。

Abstract

Carrier movement may cause measurement errors, and even make MEMS gyroscopes inoperable. The effect of carrier movement on the response of electrostatically actuated MEMS gyroscope is studied in this paper considering the nonlinear support stiffness and the detecting electrostatic force. From the governing differential equation, it is found that only the carrier acceleration may affect the response of the system. The periodic response of the system is obtained by the harmonic balance method and residue theorem. It is shown that the carrier acceleration in the driving direction can reduce the sensitivity of the system, while the acceleration in the detecting direction affects both sensitivity and zero bias. Zero bias is proportional to the magnitude of the acceleration in the detecting direction, and this proportional relationship is independent of the magnitude of the drive voltage. As the driving voltage is small, the acceleration of carrier in the detecting direction has little effect on the sensitivity and nonlinearity. However, when the driving voltage or the acceleration in the detecting direction is large, the sensitivity of the system decreases sharply, and the nonlinearity changes dramatically.

引用本文

导出引用
张利娟1, 2,张华彪3,李欣业1,王雅雪1,于涛1. 载体加速度对静电驱动微机械陀螺响应的影响分析[J]. 振动与冲击, 2021, 40(5): 55-62
ZHANG Lijuan1,2, ZHANG Huabiao3, LI Xinye1, WANG Yaxue1, YU Tao1. Effect of carrier acceleration on response of electrostatically driven MEMS gyroscope[J]. Journal of Vibration and Shock, 2021, 40(5): 55-62

参考文献

[1] Guo Z, Cheng F, Li B, et al. Research development of silicon MEMS gyroscopes: a review [J]. Microsystem Technologies, 2015, 21(10): 2053-2066.
[2] 杨波, 吴磊, 周浩, 等. 双质量解耦硅微陀螺仪的非理想解耦特性研究和性能测试[J]. 中国惯性技术学报, 2015, 23(06): 794-799.
Yang B, Wu L, Zhou H, et al. Non-ideal decoupled characteristics' research and system performance test of dual-mass decoupled silicon micro-gyroscope [J]. Journal of Chinese Inertial Technology, 2015, 23(06): 794-799.
[3] Asokanthan S F, Wang T. Nonlinear instabilities in a vibratory gyroscope subjected to angular speed fluctuations [J]. Nonlinear Dynamics, 2008, 54(1-2): 69-78.
[4] Braghin F, Resta F, Leo E, et al. Nonlinear dynamics of vibrating MEMS [J]. Sensors and Actuators A: Physical, 2007, 134(1): 98-108.
[5] Martynenko Y G, Merkuryev I V, Podalkov V V. Nonlinear dynamics of MEMS turning fork gyroscope [J]. Science China Technological Sciences, 2011, 54(5): 1078-1083.
[6] Mojahedi M, Ahmadian M T, Firoozbakhsh K. The oscillatory behavior, static and dynamic analyses of a micro/nano gyroscope considering geometric nonlinearities and intermolecular forces [J]. Acta Mechanica Sinica, 2013, 29(6): 851-863.
[7] 李欣业, 张利娟, 张华彪. 陀螺系统的受迫振动及其时滞反馈控制[J]. 振动与冲击, 2012, 31 (09): 63-68.
Li X Y, Zhang L J, Zhang H B. Forced vibration of a gyroscope system and its delayed feedback control [J]. Journal of Vibration and Shock, 2012, 31 (09): 63-68.
[8] Li X Y, Zhang L J, Zhang H B, et al. Delayed feedback control on a class of generalized gyroscope systems under parametric excitation [J]. Procedia Engineering, 2011, 15: 1120-1126.
[9] 尚慧琳, 张涛, 文永蓬. 参数激励驱动微陀螺系统的非线性振动特性研究[J]. 振动与冲击, 2017, 36(01): 102-107.
Shang H L, Zhang T, Wen Y P. Nonlinear vibration behaviors of a micro-gyroscope system actuated by a parametric excitation [J]. Journal of Vibration and Shock, 2017, 36(01): 102-107.
[10] 文永蓬, 尚慧琳. 微陀螺动力学建模与非线性分析[J]. 振动与冲击, 2015, 34(04): 69-73.
Wen Y P, Shang H L. Dynamic modeling and nonlinear analysis for a microgyroscope [J]. Journal of Vibration and Shock, 2015, 34(04): 69-73.
[11] 郝淑英, 李会杰, 张辰卿, 等. 检测刚度非线性对双检测微陀螺灵敏度稳定性影响[J]. 振动与冲击, 2018, 37(24): 46-52.
Hao S Y, Li H J, Zhang C Q, et al. Influence of sense stiffness nonlinearity on the sensitivity stability of a double-sense micro-gyroscope [J]. Journal of Vibration and Shock, 2018, 37(24): 46-52.
[12] 郝淑英, 李伟雄, 李会杰, 等. 驱动刚度非线性对双检测微陀螺性能的影响[J]. 振动与冲击, 2019, 38(14): 131-137.
Hao S Y, Li W X, Li H J, et al. Effect of driving stiffness nonlinearity on the performance of a double sense-mode micro gyroscope [J]. Journal of Vibration and Shock, 2019, 38(14): 131-137.
[13] Hamed Y S, EL-Sayed A T, El-Zahar E R. On controlling the vibrations and energy transfer in MEMS gyroscope system with simultaneous resonance [J]. Nonlinear Dynamics, 2016, 83(3): 1687-1704.
[14] Awrejcewicz J, Starosta R, Sypniewska-Kamińska G. Complexity of resonances exhibited by a nonlinear micromechanical gyroscope: an analytical study [J]. Nonlinear Dynamics, 2019, 97(3): 1819-1836.
[15] Tsai N, Sue C. Stability and resonance of micro-machined gyroscope under nonlinearity effects [J]. Nonlinear Dynamics, 2009, 56(4): 369-379.
[16] Thakur P S, Sugano K, Tsuchiya T, et al. Analysis of acceleration sensitivity in MEMS tuning fork gyroscope [C]. 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, 2011: 2006-2009.
[17] Ali M. Compensation of temperature and acceleration effects on MEMS gyroscope [C]. 13th International Bhurban Conference on Applied Sciences and Technology, Islamabad, 2016: 274-279.
[18] Bancroft J B, Lachapelle G. Estimating MEMS gyroscope g-sensitivity errors in foot mounted navigation [C]. 2012 Ubiquitous Positioning, Indoor Navigation, and Location Based Service, Helsinki, 2012: 1-6.
[19] Lee K B. Principles of micro electromechanical system [M]. Hoboken, NJ, USA: John Wiley & Sons International Rights, 2011.
[20] 钟玉泉. 复变函数论[M]. 北京: 高等教育出版社, 2013.
Zhong Y Q. Complex Variable Theory [M]. Beijing: High Education Press, 2013.

PDF(1136 KB)

Accesses

Citation

Detail

段落导航
相关文章

/