齿根安全条件下多状态啮合齿轮传动系统安全-吸引盆侵蚀与分岔

李正发1,2,苟向锋1,2,朱凌云1,2,石建飞1,2,尹桩1,2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (5) : 63-74.

PDF(5869 KB)
PDF(5869 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (5) : 63-74.
论文

齿根安全条件下多状态啮合齿轮传动系统安全-吸引盆侵蚀与分岔

  • 李正发1,2,苟向锋1,2,朱凌云1,2,石建飞1,2,尹桩1,2
作者信息 +

Erosion and bifurcation of safety-attraction basin for multi-state meshing gear transmission system under tooth root safety condition

  • LI Zhengfa1,2, GOU Xiangfeng1,2, ZHU Lingyun1,2, SHI Jianfei1,2, YIN Zhuang1,2
Author information +
文章历史 +

摘要

轮齿折断是齿轮主要失效形式之一。以包含单双齿交替啮合、轮齿脱啮和齿背接触等的多状态啮合直齿圆柱齿轮传动系统为研究对象,计算齿根危险截面上的弯曲应力,以齿根许用弯曲应力为边界条件,建立防止轮齿折断的齿根安全条件。基于胞映射方法,用四阶Runge-Kutta法数值计算考察区域内随负载和齿侧间隙变化时系统的吸引盆及其演变过程。判断齿根安全条件下吸引盆中不同运动类型吸引域的安全特性得到系统的安全-吸引盆。借助吸引子、多初值分岔图和最大Lyapunov指数图(TLE)分析安全-吸引盆的侵蚀与分岔机理。研究发现:吸引盆中不同运动类型吸引域在齿根安全条件下的安全特性不同;吸引子的出现和消失直接导致安全-吸引盆的分岔;多初值分岔图中出现周期跳跃和分岔是引发安全-吸引盆分岔的主要原因。研究结果可为直齿轮传动系统安全运行提供参考。

Abstract

The break of tooth is one of the main failure modes of the gear. The spur gear transmission system with multiple meshing states, such as the alternating mesh of single and double teeth, disengagement and back-side contacting, is taken as the research object. The tooth root safety condition for preventing tooth fracture is established by calculating the bending stress of the tooth root in the dangerous section of the tooth during the gear meshing process and the allowable bending stress of the tooth root is chosen as a boundary condition. Based on the cell mapping method, system's attraction basins and its evolutions with the change of the load or the flank clearance are calculated numerically by 4-order Runge-Kutta method in the area of investigation. Safety-attraction basins of the system are obtained by judging the safety characteristics of the attraction domains of different motion types in attraction basins under the safety condition of tooth root. Attractors, multiple initial values bifurcation diagrams and top Lyapunov exponents (TLE) are used to analyze erosions and bifurcations process of safety-attraction basins. The results show that different motion types of attraction basins have different safety characteristics under the condition of tooth root safety. The appearances and disappearances of attractors directly lead to the bifurcations of safety-attraction basins. The occurrence of cycle jumps and bifurcations in multiple initial value bifurcation diagrams is the main cause of bifurcations of safety-attraction basins. The research can provide references for the safety operation of the spur gear transmission system.

关键词

齿轮 / 齿根弯曲应力 / 安全-吸引盆 / 多初值分岔

Key words

Gear / Bending stress of tooth root / Safety-attraction basins / Multi-initial bifurcation

引用本文

导出引用
李正发1,2,苟向锋1,2,朱凌云1,2,石建飞1,2,尹桩1,2. 齿根安全条件下多状态啮合齿轮传动系统安全-吸引盆侵蚀与分岔[J]. 振动与冲击, 2021, 40(5): 63-74
LI Zhengfa1,2, GOU Xiangfeng1,2, ZHU Lingyun1,2, SHI Jianfei1,2, YIN Zhuang1,2. Erosion and bifurcation of safety-attraction basin for multi-state meshing gear transmission system under tooth root safety condition[J]. Journal of Vibration and Shock, 2021, 40(5): 63-74
中图分类号: null   

参考文献

[1]张莹, 都琳, 岳晓乐. Duffing映射的全局动力学行为分析与研究[J]。西北工业大学学报, 2017,35(02):316-320.
Zhang Yin , Du Lin , Yue Xiaole. Analysis and Research on the Global Dynamical Behavior of Duffing Map[J]. Journal of Northwestern Polytechnical University, 2017, 35 (02):316-320.
[2]唐进元, 熊兴波, 陈思雨. 基于图胞映射方法的单自由度非线性齿轮系统全局特性分析[J]. 机械工程学报, 2011, 47(5):59-65.
Tang Jinyuan , Xiong Xingbo , Cheng Siyu. Analysis of Global Character of Single Degree of Freedom Nonlinear Gear System Based on Digraph Cell Mapping Method[J]. Journal of Mechanical Engineering, 2011, 47(5):59-65.
[3]Lu J W , Zeng F L , Xin J Y , et al. Influences of stochastic perturbation of parameters on dynamic behavior of gear system[J]. Journal of Mechanical Science & Technology, 2011, 25(7):1667-1673.
[4]Gou X F , Zhu L Y , Chen D L. Bifurcation and chaos ana- lysis of spur gear pair in two-parameter plane[J]. Nonli- near Dynamics, 2015, 79(3):2225-2235.
[5]苟向锋, 朱凌云, 陈代林, 等. 参数耦合对单自由度直齿圆柱齿轮系统动态特性影响分析[J]. 振动工程学报, 2017, 30(2):202-213.
Gou Xiangfeng , Zhu Lingyun , Chen Dailin , et al. Analy- sis of effect of parameters coupling on the dynamic chara- cteristics of a single degree-of-freedom spur gear sys- tem[J]. Journal of Vibration Engineering, 2017, 30(2): 202- 213.
[6]Zhan-Jun Long , Seung-Keon Lee,Joon-Young Kim. Esti- mation of survival probability for a ship in beam seas using the safe basin[J]. Ocean Engineering,2009,37(4).
[7]Erdem Üҫer. Examination of the stability of trawlers in beam seas by using safe basins[J]. Ocean Engineering, 2011, 38(17):1908-1915.
[8]葛根, 竺致文, 许佳. 形状记忆合金梁在简谐和白噪声联合激励下的混沌及安全盆侵蚀现象[J]. 振动与冲击, 2012, 31(23):1-5.
Ge Gen , Zhu Zhiwen , Xu Jia. Chaos and fractal bound- ary of safe basin of a shape memory alloy beam subjected to simple hamonic and white nosie excitations[J].Journal of Vibration and Shock, 2012, 31(23):1-5.
[9]尚慧琳, 韩元波, 李伟阳. 时滞位置反馈对一类非线性相对转动系统混沌运动和安全盆侵蚀的控制[J]. 物理学报,2014,63(11):88-95.
Shang Huilin , Han Yuanbo , Li Weiyang. Suppression of chaos and basin erosion in a nonlinear relative rotation system by delayed position feedback[J]. Acta Phys. Sin, 2014,63(11):88-95.
[10]Gong P , Xu J , Sun Z. The influence of weak parametric periodic perturbation on safe basin and the control of the fractal erosion basin[J]. ACTA HYSICA SINICA, 2001, 50(5): 845- 846.
[11]刘志亮, 刘仕林, 李兴林, 等. 滚动轴承安全域建模方法及其在高速列车异常检测中的应用[J]. 机械工程学报, 2017, 53(10): 116-124.
Liu Zhiliang , Liu Shilin , Li Xinglin , et al. Safety Dom- ain Modelling of Rolling Bearings and Its Application to Anomaly Detection for High-speed Rail Vehicles[J]. Journal of Mechanical Engineering, 2017, 53(10): 116- 124.
[12]Wei D Q , Zhang B , Qiu D Y , et al. Effect of noise on erosion of safe basin in power system[J]. Nonlinear Dynamics, 2010, 61(3):477-482.
[13]Jian-fei Shi , Xiang-feng Gou , Ling-yun Zhu. Modeling and analysis of a spur gear pair considering multi-state mesh with time-varying parameters and backlash[J]. Mechanism and Machine Theory, 2019, 134:582-603.
[14]尹桩, 苟向锋, 朱凌云. 考虑齿面冲击及摩擦的单级齿轮系统动力学建模与分析[J]. 振动工程学报, 2018, 31(06): 974-983.
Yin Zhuang , Gou Xiangfeng , Zhu Lingyun. Dynamic modeling and analysis of single-stage gear system considering tooth surface impact and friction[J]. Journal of Vibration Engineering, 2018, 31(06): 974-983.
[15]Miryam B. Sánchez, Miguel Pleguezuelos, José I. Pedrero, et al. Enhanced model of load distribution along the line
of contact for non-standard involute external gears[J]. Meccanica, 2013, 48:527-543.
[16]闻邦椿. 机械设计手册[M]. 北京: 机械工业出版社, 2016.
[17]A. Farshidianfar , A. Saghafi. Global bifurcation and chaos analysis in nonlinear vibration of spur gear systems[J]. Nonlinear Dynamics. 2014, 75:783-806.
[18]Xiangfeng Gou , Lingyun Zhu , Changjun Qi. Nonlinear dynamic model of a gear-rotor-bearing system conside- ring the flash temperature[J]. Journal of Sound and Vibration , 2017, 410:187-208.
[19]Xinhao Tian. Dynamic simulation for system response of gearbox including localized gear faults, Masters Abstracts international, 2004, Volume 43-03, page: 0979.
[20]周长江, 解亚宁, 黄操, 等. 含摩擦齿根弯曲应力载荷历程计算与测试[J]. 机械传动, 2016, 40(11): 111- 116.
Zhou Changjiang , Xie Yaning , Huang Cao , et al. Calcu- lation and Test of Root Bending Stress Under Load -history Including Friction[J]. Mechanism and Machine Theory, 2016, 40(11): 111-116.

基金

null

PDF(5869 KB)

369

Accesses

0

Citation

Detail

段落导航
相关文章

/