输电线路导线阵风响应系数研究

杨风利,张宏杰,王飞,黄国

振动与冲击 ›› 2021, Vol. 40 ›› Issue (5) : 85-91.

PDF(827 KB)
PDF(827 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (5) : 85-91.
论文

输电线路导线阵风响应系数研究

  • 杨风利,张宏杰,王飞,黄国
作者信息 +

Gust response coefficients of transmission line conductor

  • YANG Fengli, ZHANG Hongjie, WANG Fei, HUANG Guo
Author information +
文章历史 +

摘要

采用阵风荷载因子法推导了不同档数、影响线函数下输电线路导线阵风响应系数的计算公式,研究了湍流积分尺度、风速、档距、共振响应分量、分离系数和峰值因子等因素对导线阵风响应系数的影响规律,对并将其与现行ASCE规范和中国规范的导线阵风响应系数进行了比较分析。分析结果表明,计算导线跨中位移和输电塔风致响应时,应分别考虑单档和相邻两档导线上的风场不完全相关性。影响线函数采用线性曲线或正弦曲线时,其差异对导线阵风响应的影响可以忽略。与风速和湍流积分尺度相比,档距对导线阵风响应系数的影响更为显著,档距由100m增至1000m时,导线阵风响应系数至少降低了20%。忽略导线共振响应分量影响,导线阵风响应系数会偏小5%以上。峰值因子对导线阵风响应的影响较为显著,峰值因子按照ASCE规范取3.6比按照DL/T 5551-2018规范取2.5计算得到的导线阵风响应系数高8.6%。

Abstract

With different span numbers and influence line functions, calculation formulas of gust response factors for transmission line conductors were derived based on the gust load factor method. By considering the parameters of turbulence scale, span, wind speed, resonant response term, approximate separation coefficient and statistical peak factor, effect rules on the conductor gust response factors were studied. The calculated gust response factors by the approved methods were compared with values regulated in the applicable ASCE standard and Chinese standard. For calculating the conductor middle point displacement and the transmission tower wind induced responses, incomplete spatial correlation characteristics in one span and adjacent two spans conductor should be considered respectively. The difference of linear influence line function and sinusoidal influence line function has little effect on the conductor gust responses. Comparing with wind speed and turbulence scale, conductor span has more significant effect on gust response factors. The gust response factors decrease by at least 20% when the span is changing from 100m to 1000m. If the resonant response term of conductors was neglected, the conductor gust response factor would decrease by more than 5%. When the statistical peak factor is equal to 3.6 and 2.5 according to ASCE standard and DL/T 5551-2018 standard separately, the conductor gust response factor increases by about 8.6%.

关键词

阵风响应 / 联合接纳函数 / 档距 / 湍流积分尺度 / 影响线

Key words

gust response / joint acceptance function / span / turbulence scale / influence line

引用本文

导出引用
杨风利,张宏杰,王飞,黄国. 输电线路导线阵风响应系数研究[J]. 振动与冲击, 2021, 40(5): 85-91
YANG Fengli, ZHANG Hongjie, WANG Fei, HUANG Guo. Gust response coefficients of transmission line conductor[J]. Journal of Vibration and Shock, 2021, 40(5): 85-91

参考文献

[1] American Society of Civil Engineers. ASCE manuals and reports on engineering practice No.74[S]. Reston: American Society of Civil Engineers, 2010.
[2] European Committee for Electrotechnical Standardization. EN 50341-1 Overhead electrical lines exceeding AC 45kV[S]. Brussels, Belgium , 2003.
[3] JEC-127-1979 Design standards on structures for transmissions[S]. Tokyo: Japanese Electrotechnical Committee, 1979(in Japanese).
[4] 徐小东, 王钢. 关于不均匀风压系数的研究[J]. 电力建设, 2007, 28(7): 1-4.
Xu Xiaodong, Wang Gang. Research on wind pressure asymmetric coefficient. Electric Power Construction, 2007, 28(7): 1-4.
[5] GB 50545-2010 110kV~750kV架空输电线路设计规范[S]. 北京: 中国计划出版社, 2010.
[6] DL/T 5551-2018 架空输电线路荷载规范[S]. 北京: 中国计划出版社, 2019.
[7] Davenport, A.G. Gust loading factors. Journal of Structural Devision., ASCE, 93, 1967, 11-34.
[8] Davenport, A.G. Gust response factors for transmission line loading. Proceedings IEEE, 1979, Fifth Int. Conf. on Wind Engineering. U. E. Cermack, ed., New York, Pergamon Press, 2, 899-909.
[9] Davenport, A.G. The response of slender line-like structures to a gusty wind. Proc. Inst. Civil Eng., Vol.23, 1962.
[10]Yin Zhou, Ahsan Kareem. Gust loading factor: new model. Journal of Structural Engineering, 2001, 127(2): 168-175.
[11] John D. Holmes, Andrew C. Allsop, John D. Ginger. Gust durations, gust factors and gust response factors in wind codes and standards [J]. Wind and Structures, 2014, 19(3): 339-352.
[12] Haitham Aboshosha, Amal Elawady, Ayman El Ansary, et al. Review on dynamic and quasi-static buffeting response of transmission lines under synoptic and non-synoptic winds [J]. Engineering Structures, 2016, 112: 23-46.
[13] Ahsan Kareem, Yin Zhou. Gust loading factor-past, present and future [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91: 1301-1328.
[14] Roberto H,Benhcke T C,Eric Ho,Review of span and gust factors for transmission line design[C]. Electrical Transmission and Substation Structures Conference of ASCE. New York: IEEE, 2009, 209-220.
[15] 段志勇. 不同地貌的风场特性及输电线路风致效应研究[D]. 杭州: 浙江大学, 2017.
[16] 石川智巳. A study on wind load estimation method considering dynamic effect for overhead transmission lines [R]. Tokyo, Japan: 2004.
[17] 汪大海, 吴海洋, 梁枢果. 输电线风荷载规范方法的理论解析和计算比较研究[J]. 中国电机工程学报, 2014, 34( 36): 6613-6621.
Wang Dahai, Wu Haiyang, Liang Shuguo. Theoretical analysis and comparison on typical international wind load codes of transmission conductors. Proceedings of the CSEE, 2014, 34( 36): 6613-6621.
[18]A.M. Loredo-Souza. The behaviour of transmission lines under high winds [D]. The University of Western Ontario, 1996, Canada.
[19] A.M. Loredo-Souza, A.G. Davenport. The effects of high winds on transmission lines [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74-76: 987-994.
[20]楼文娟, 段志勇, 张少锋, 等.湍流尺度内风场的水平向空间相关性研究[J]. 建筑结构学报, 2016, 37(1): 77-84.
Lou Wenjuan, Duan Zhiyong, Zhang Shaofeng, et al. Experimental study on horizontal coherence of wind speed for separations comparable to turbulent scales. Journal of Building Structures, 2016, 37(1): 77-84.
[21]张宏杰, 杨风利, 杨靖波, 等. 导线风压不均匀系数的取值探讨[J]. 工业建筑, 2016, 46(8): 7-11.
Zhang Hongjie, Yang Fengli, Yang Jingbo, et al. Discussion on non-uniform factor of wind pressure of conductor. Industrial Construction, 2016, 46(8): 7-11.
[22]卞荣, 张弘, 吴列平, 等. 丘陵地形风场水平非均匀性和导线风荷载[J]. 工业建筑, 2019, 49(6): 99-106.
Bian Rong, Zhang Hong, Wu Lieping, et al. Horizontal non-uniform characteristics of wind fields and wind loads of conductors in hilly terrains. Industrial Construction, 2019, 49(6): 99-106.
[23] Transmission Line Mechanical Research Center, Electric Power Research Institute. Characteristics study of transmission line mechanical research center(TLMRC)wind tower data-Notes on field-wind loading experiments[R]. Texas, USA: 1992.
[24] JTG/T 3360-01-2018 公路桥梁抗风设计规范[S]. 北京: 人民交通出版社股份有限公司, 2019.
[25] 黄本才, 汪丛军. 结构抗风分析原理及应用[M]. 上海: 同济大学出版社, 2008.

PDF(827 KB)

Accesses

Citation

Detail

段落导航
相关文章

/