单段消能摇摆结构体系通过刚度较大的摇摆结构,能够控制主体结构均匀变形,遏制薄弱层产生。当结构高度较高时,单段摇摆结构的抗弯刚度较难满足抗震设计需求,单段消能摇摆结构体系不适用于高层建筑。基于此,提出了将单段摇摆结构划分为双段、并于分段位置处布设位移型阻尼器的双段消能摇摆结构体系。双段摇摆机制可以抑制薄弱层产生,降低摇摆结构的抗震设计需求。阻尼器能够消耗地震能量,进一步降低结构的地震反应。以双段消能摇摆钢桁架-框架结构为对象,分析对比了支撑-框架结构、单段消能摇摆钢桁架-框架结构、单段摇摆钢桁架-框架结构以及双段摇摆钢桁架-框架结构的抗震性能。采用OpenSees软件建立弹塑性有限元分析模型,进行了弹塑性抗震分析以及增量动力时程分析。研究表明,双段消能摇摆结构体系具有良好的抗震性能与可恢复性能,相比单段消能摇摆结构体系,可以进一步减小结构地震反应和摇摆结构抗震设计需求,该体系能应用于更高的建筑。
Abstract
Continuous rocking structural system with dampers is capable of limiting weak stories and controlling structural deformation shape due to continuous rocking structure and dampers. However, this type of structural system is not suitable for high-rise buildings due to the limited flexural stiffness of continuous rocking structure, which cannot always meet seismic design demands. Dual rocking structural system with dampers is promoted. The dual rocking mechanism reduces seismic design demands of rocking structures and prevents weak stories by dividing continuous rocking structures into two parts. The dampers set at bottom of rocking structures dissipate earthquake energy and decrease seismic response of the whole structure. Four structural systems are established as comparisons to investigate the seismic performance of dual-rocking structural system with dampers, including brace frame structure, continuous rocking structure with dampers, continuous rocking structure without dampers and dual-rocking structure without dampers. Elastoplastic models are created by software OpenSees and seismic elastoplastic analysis and incremental dynamic analysis are conducted. According to the study, dual-rocking structural system with dampers, with favorable seismic performance and anti-collapse behavior, is more efficient in reducing seismic design demands of rocking structure and decreasing seismic response, comparing to continuous rocking structural system with dampers. It is suitable for high-rise buildings.
关键词
双段摇摆结构 /
变形控制 /
阻尼器 /
抗震性能 /
易损性
{{custom_keyword}} /
Key words
dual-rocking structure /
deformation controlling /
damper /
seismic behavior /
fragility
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Takeuchi T, Chen X, Matsui R. Seismic performance of controlled spine frames with energy-dissipating members [J]. Journal of Constructional Steel Research, 2015, 114:51-65.
[2] 曹海韵,潘鹏,叶列平.基于推覆分析混凝土框架摇摆墙结构抗震性能研究[J].振动与冲击,2011,30(11):240-244.
Cao HY, Pan P, Ye LP. Pushover analysis of RC frame rocking wall structure. [J] Journal of vibration and shock. 2011,30(11):240-244.
[3] 蒋欢军,刘其舟.可恢复功能剪力墙结构研究进展[J].振动与冲击,2015,34(07):51-58.
Jiang HJ, Liu QZ. State-of-the-art of the research advances on resilient shear walls. [J] Journal of vibration and shock. 2015,34(07):51-58.
[4] 张富文,李向民,陈玲珠,许清风.一种框架摇摆墙结构的实现形式及其有限元分析[J].振动与冲击, 2016,35(17):213-217.
Zhang FW, Li XM, Chen LZ. Design and finite element analysis for a new frame-rocking wall structure. [J] Journal of vibration and shock. 2016,35(17):213-217.
[5] 冯玉龙,吴京,孟少平,王强,付康.底部带有屈曲约束支撑的摇摆墙框架结构抗震性能分析[J].振动与冲击, 2016,35(23):35-40.
Feng YL, Wu J, Meng SP. A seismic performance analysis of rocking wall frame structures with buckling-restrained braces in base. [J] Journal of vibration and shock. 2016,35(23):35-40.
[6] Wiebe L, Christopoulos C. Mitigation of Higher Mode Effects in Base-Rocking Systems by Using Multiple Rocking Sections[J]. Journal of Earthquake Engineering, 2009, 13(sup1):83-108.
[7] Wiebe L, Christopoulos C, Tremblay R, et al. Mechanisms to limit higher mode effects in a controlled rocking steel frame. 1: Concept, modelling, and low-amplitude shake table testing[J]. Earthquake Engineering & Structural Dynamics, 2013, 42(7):1053–1068.
[8] Wiebe L, Christopoulos C, Tremblay R, et al. Mechanisms to limit higher mode effects in a controlled rocking steel frame. 2: Large‐amplitude shake table testing [J]. Earthquake Engineering & Structural Dynamics, 2013, 42(7): 1069-1086.
[9] Psycharis I N. Dynamic behavior of rocking two‐block assemblies [J]. Earthquake Engineering & Structural Dynamics, 2010, 19(4):555-575.
[10] 冯玉龙, 吴京, 孟少平. 连续摇摆墙-屈曲约束支撑框架抗震性能分析[J]. 工程力学, 2016, 33(b06):90-94.
Feng YL, Wu J, Meng SP. Seismic performance analysis of continuously rocking wall-buckling restrained braced frames [J]. Engineering Mechanics, 2016, 33(b06):90-94.
[11] Ther T. Model for multi-block columns subjected to base excitation [J]. Earthquake Engineering & Structural Dynamics, 2018, 47(2).
[12] GB50011-2010. 建筑抗震设计规范. 北京:中国建筑工业出版社,2010.
GB50011-2010. Code for Seismic Design of Buildings. Beijing: China Architecture & Building Press, 2010.
[13] GB50017-2003. 钢结构设计规范. 北京:中国建筑工业出版社,2003
GB50017-2003. Code for design of steel structures. Beijing: China Architecture & Building Press, 2003.
[14] Black RG, Wenger W A, Popov E P. Inelastic buckling of steel struts under cyclic loading reversals. Earthquake Engineering Research Center, UCB/EERC-84/09, 1980.
[15] 黄波, 陈泉, 李涛等. 国标Q235钢屈曲约束支撑低周疲劳试验研究[J]. 土木工程学报, 2013(6):29-34.
Huang Bo, Chen Q, Li T. Low-cyclic fatigue test of Q235 steel buckling-restrained braces [J]. China Civil Engineering Journal. 2013(6):29-34.
[16] Erochko J, Christopoulos C, Tremblay R, et al. Residual Drift Response of SMRFs and BRB Frames in Steel Buildings Designed according to ASCE 7-05[J]. Journal of Structural Engineering, 2011, 137(5):589-599.
[17] FEMA P-695. Quantification of Building Seismic Performance Factors. [S] Applied Technology Council for Federal Emergency Management Agency, Washington, D.C, 2009.
[18] Gregory A. MacRae, Yoshihiro Kimura, Charles Roeder. Effect of column stiffness on braced frame seismic behavior [J]. Journal of Structural Engineering. 2004.130(3): 381-391.
[19] 吕大刚. 结构抗震可靠度二种简化解析表达式的一致性证明[J]. 地震工程与工程振动, 2009, 29(5):59-65.
Lv DG. Verification of consistency of two simplified analytical formulations for structural seismic reliability [J]. Journal of earthquake engineering and engineering vibration, 2009, 29(5):59-65.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}