预制倒角对泡沫铝动态冲击变形及吸能的影响

沈浩田1,2,刘欢1,2,杜中德3,何世伟1,2,华中胜1,2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (6) : 100-106.

PDF(1896 KB)
PDF(1896 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (6) : 100-106.
论文

预制倒角对泡沫铝动态冲击变形及吸能的影响

  • 沈浩田1,2,刘欢1,2,杜中德3,何世伟1,2,华中胜1,2
作者信息 +

Effect of prefabricated chamfer on the dynamic impact deformation and energy absorption of aluminum foam

  • SHEN Haotian1,2,LIU Huan1,2,DU Zhongde3,HE Shiwei1,2,HUA Zhongsheng1,2
Author information +
文章历史 +

摘要

为防止峰值过高导致的保护失效,对闭孔泡沫铝试件设置三种预制倒角(单倒角、双倒角、中部倒角),探究动态冲击过程中预制倒角对泡沫铝特征曲线、变形与吸能的影响。通过落锤设备进行低速冲击试验获取特征曲线,结合高速摄影设备、ARAMIS软件以及材料变形剖面分析了不同倒角试件的变形模式、能量吸收效率及其对峰值载荷的影响机理。结果表明:预制倒角使泡沫材料初始变形模式发生改变,有效降低了泡沫铝材料在动态冲击过程中的初始峰值载荷,其中单倒角降幅最为明显为26%;倒角种类决定平台区趋势及材料整体变形模式,中部倒角平台区呈硬化现象,载荷波动最明显;预置倒角对泡沫铝材料平台区的能量吸收效率无显著影响。

Abstract

Aluminum foams with three types of chamfers were manufactured, with the aim to avoid protection failure caused by the high load impact.The characteristic curve, deformation mode and energy absorption ability were investigated.A drop hammer equipment was utilized to obtain the characteristic curve.The deformation mode and energy absorption efficiency were analyzed by a high-speed camera and the ARAMIS software.The results show that the peak load on the foam with prefabricated chamfer decreases during impact, due to the change of its initial deformation mode.In particular, the decrease degree of the peak load can reach 26%, which exists in aluminum foam with single chamfer.The plateau trend and the deformation mode are closely related to the chamfer type.Obvious load oscillation and plateau hardening can be found in specimens with middle chamfer.The chamfer has no significant effect on the energy absorption efficiency in the platform area of aluminum foam.

关键词

泡沫铝 / 落锤试验 / 变形模式 / 预制倒角

Key words

aluminum foam / drop weight test / deformation mode / prefabricated chamfer

引用本文

导出引用
沈浩田1,2,刘欢1,2,杜中德3,何世伟1,2,华中胜1,2. 预制倒角对泡沫铝动态冲击变形及吸能的影响[J]. 振动与冲击, 2021, 40(6): 100-106
SHEN Haotian1,2,LIU Huan1,2,DU Zhongde3,HE Shiwei1,2,HUA Zhongsheng1,2. Effect of prefabricated chamfer on the dynamic impact deformation and energy absorption of aluminum foam[J]. Journal of Vibration and Shock, 2021, 40(6): 100-106

参考文献

[1]SUN Y , LI Q M .Dynamic compressive behaviour of cellular materials: a review of phenomenon mechanism and modelling[J].International Journal of Impact Engineering, 2017,112:74-115.
[2]KADER M A , ISLAM M A , HAZELL P J , et al.Modelling and characterization of cell collapse in aluminium foams during dynamic loading[J].International Journal of Impact Engineering, 2016, 96:78-88.
[3]PETIT C, MAIRE E , MEILLE S , et al.Two-scale study of the fracture of an aluminum foam by X-ray tomography and finite element modeling[J].Materials & Design, 2017, 120:117-127.
[4]XIA X , ZHANG Z , ZHAO W , et al.Acoustic properties of closed-cell aluminum foams with different macrostructures[J].Journal of Materials Science & Technology, 2017,33(11):1227-1234.
[5]程鹏,李伟,翟敏刚,等.双层泡沫铝夹芯板抗滚石冲击结构性能优化研究[J].振动与冲击,2018,37(5):85-91.
CHENG Peng, LI Wei, ZHAI Mingang, et al.Energy-absorbing characteristics of foam-filled oval tubes under oblique impact [J].Journal of Vibration and Shock, 2018, 37 (5): 85 -91.
[6]李妍妍,郑志军,王长峰.闭孔泡沫金属变形模式的有限元分析[J].爆炸与冲击,2014,34(4):464-470.
LI Yanyan, ZHENG Zhijun, WANG Changfeng.Finite element analysis on deformation modes of closed-cell metallic foam [J].Explosion and Impact, 2014,34 (4): 464-470.
[7]王鹏飞,徐松林,郑航,等.变形模式对多孔金属材料SHPB实验结果的影响[J].力学学报,2012,44(5):928-932.
WANG Pengfei, XU Songlin, ZHENG Hang, et al.Effect of deformation mode on SHPB experimental results of porous metal materials [J].Journal of Mechanics, 2012, 44 (5): 928-932.
[8]章超,徐松林,王鹏飞,等.不同冲击速度下泡沫铝变形和应力的不均匀性[J].爆炸与冲击,2015,35(4):567-575.
ZHANG Chao, XU Songlin, WANG Pengfei, et al.Non-uniformity of deformation and stress of aluminum foam under different impact velocities [J].Explosion and Shock Waves, 2015, 35 (4): 567-575.
[9]WANG N Z, MAIREB E, CHEN X, et al.Compressive performance and deformation mechanism of the dynamic gas injection aluminum foams[J].Materials Characterization,2019,147:11-20.
[10]HUANG R , MA S , ZHANG M , et al.Dynamic deformation and failure process of quasi-closed-cell aluminum foam manufactured by direct foaming technique[J].Materials Science and Engineering: A, 2019, 756: 302-311.
[11]LI L , XUE P , LUO G .A numerical study on deformation mode and strength enhancement of metal foam under dynamic loading[J].Materials & Design, 2016,110: 72-79.
[12]WANG S L, DING Y Y, WANG C F, et al.Dynamic material parameters of closed-cell foams under high-velocity impact[J].International Journal of Impact Engineering, 2017,99: 111-121.
[13]丁圆圆, 郑志军, 王士龙,等.多孔材料吸能行为对相对密度和冲击速度的依赖性[J].固体力学学报, 2018, 39(6):29-37.
DING Yuanyuan, ZHENG Zhijun, WANG Shilong, et al.The dependence of energy absorption behavior of cellular materials on relative density and impact velocity [J].Journal of Solid Mechanics, 2018,39 (6): 29-37.
[14]RAMACHANDRA S , KUMAR P S , RAMAMURTY U .Impact energy absorption in an Al foam at low velocities[J].Scripta Materialia, 2003, 49(8):741-745.
[15]张健,赵桂平,卢天健.泡沫金属在冲击载荷下的能量吸收特性[J].西安交通大学学报,2013,47(11):105-112.
ZHANG Jian, ZHAO Guiping, LU Tianjian.Energy absorption behaviour of metallic cellular materials under impact loading [J].Journal of Xi’an Jiaotong University, 2013, 47 (11): 105- 112.
[16]肖先林,王长金,赵桂平.碳纤维复合材料-泡沫铝夹芯板的冲击响应[J].振动与冲击, 2018, 37(15):110-117.
XIAO Xianlin, WANG Changjin, ZHAO Guiping.Dynamic responses of carbon fiber composite sandwich panels with aluminum foam core subjected to impact loading [J].Journal of Vibration and Shock, 2018,37 (15): 110-117.
[17]黄粒,杨东辉,王辉,等.钪锆元素增强泡沫铝合金的压缩和吸能性能[J].中国有色金属学报,2014,24(3):718-724.
HUANG Li, YANG Donghui, WANG Hui, et al.Improving compressive strength and energy absorption properties of cellular Al foams alloyed with Sc and Zr[J].The Chinese Journal of Nonferrous Metals, 2014, 24 (3): 718-724.
[18]UZUN A.Production of aluminium foams reinforced with silicon carbide and carbon nanotubes prepared by powder metallurgy method[J].Composites Part B: Engineering,2019,172(1):206-217.
[19]AN Y , YANG S , WU H , et al.Investigating the internal structure and mechanical properties of graphene nanoflakes enhanced aluminum foam[J].Materials & Design, 2017, 134: 44-53.
[20]ROSSI S , BERGAMO L , FONTANARI V .Fire resistance and mechanical properties of enamelled aluminium foam[J].Materials & Design, 2017, 132:129-137.
[21]JUNG A , BEEX L A A , DIEBELS S , et al.Open-cell aluminium foams with graded coatings as passively controllable energy absorbers[J].Materials & Design, 2015, 87:36-41.
[22]WANG Y H, ZHAI X M, YAN J C, et al.Experimental, numerical and analytical studies on the aluminum foam filled energy absorption connectors under impact loading[J].Thin-Walled Structures,2018,131(1):566-576.
[23]李兵,姚广春,王永,等.纯铝基泡沫铝材料的制备工艺[J].东北大学学报(自然科学版),2007,28(8):1159-1162.
LI Bing, YAO Guangchun, WANG Yong, et al.On the preparation process of foamed pure aluminum [J].Journal of Northeastern University(Natural Science), 2007, 28 (8): 1159-1162.
[24]王志华.泡沫铝合金动态力学性能及其吸能机理的研究[D].太原:太原理工大学, 2005.
[25]LI Q M, MAGKIRIADIS I, HARRIGAN J J.Compressive strain at the onset of densification of cellular solids[J].Journal of Cellular Plastics, 2006, 42(5): 371-392.
[26]刘欢.泡沫铝材料的吸能及防爆特性研究[D].沈阳:东北大学, 2015.
[27]MARSAVINA L,  KOVCIK J, LINUL E.Experimental validation of micromechanical models for brittle aluminium alloy foam[J].Theoretical and Applied Fracture Mechanics,2016,83:11-18.
[28]RUAN D, LU G, WANG B,et al.In-plane dynamic crushing of honeycombs-a finite element study [J].International Journal of Impact Engineering, 2003, 28(2): 161-182.
[29]WANG P , XU S , LI Z , et al.Experimental investigation on the strain-rate effect and inertia effect of closed-cell aluminum foam subjected to dynamic loading[J].Materials Science and Engineering: A, 2015, 620:253-261.

PDF(1896 KB)

286

Accesses

0

Citation

Detail

段落导航
相关文章

/