含多刚性约束的两自由度振动系统的动力学特性分析

王世俊1,同长虹2,罗冠炜3

振动与冲击 ›› 2021, Vol. 40 ›› Issue (6) : 11-22.

PDF(3331 KB)
PDF(3331 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (6) : 11-22.
论文

含多刚性约束的两自由度振动系统的动力学特性分析

  • 王世俊1,同长虹2,罗冠炜3
作者信息 +

Dynamic characteristics of a two-degree-of-freedom vibration system with multiple rigid constraints

  • WANG Shijun1,TONG Changhong2,LUO Guanwei3
Author information +
文章历史 +

摘要

建立了含多刚性约束的两自由度碰撞振动系统的力学模型,给出了质块于各刚性约束面黏滞运动的条件。通过多目标、多参数协同仿真在(ω,δ)-参数平面得到了系统周期运动的模式类型和分布区域。讨论了低频域内基本周期碰撞振动群的分布区域和转迁规律,相邻基本周期碰撞振动相互转迁的不可逆性产生了两类转迁区域:舌状域和带状迟滞域。该研究分析了舌状转迁域内亚谐碰撞振动的类型和形成机理,以及系统参数对于系统周期碰撞振动在(ω,δ)-参数平面上存在类型、分布规律、转迁特点的影响。

Abstract

The mechanical model of a two-degree-of-freedom impact vibration system under multiple rigid constraints was established, and the conditions of chattering motion on multiple collision surfaces were given.The pattern types and distribution areas of the system’s periodic motions were obtained on a (ω,δ)-parameter plane by multi-objective and multi-parameter co-simulation.The distribution and formation of the fundamental period group of impact motions in the low frequency region were discussed.It is shown the irreversibility of the mutual transition of fundamental period impact motions produces two types of transition regions, the tongue-shaped region and the band-shaped hysteretic region.The type and formation of subharmonic impact motion in the tongue-shaped regions were analyzed.The influence of system parameters on the type, distribution and transition of periodic impact motions of the system on the (ω,δ)-parameter plane was analyzed.

关键词

多刚性约束 / 碰撞 / 低频振动 / 分岔

Key words

multiple rigid constraint / impact / low frequency vibration / bifurcation

引用本文

导出引用
王世俊1,同长虹2,罗冠炜3. 含多刚性约束的两自由度振动系统的动力学特性分析[J]. 振动与冲击, 2021, 40(6): 11-22
WANG Shijun1,TONG Changhong2,LUO Guanwei3. Dynamic characteristics of a two-degree-of-freedom vibration system with multiple rigid constraints[J]. Journal of Vibration and Shock, 2021, 40(6): 11-22

参考文献

[1]SHAW S W, HOLMES P J.A periodically forced piecewise linear oscillator[J].Journal of Sound and Vibration, 1983,90(1): 129-155.
[2]NORDMARK A B.Non-periodic motion caused by grazing incidence in an impact oscillator[J].Journal of Sound and Vibration, 1991,145(2): 279-297.
[3]WEGER J D, BINKS D, MOLENAAR J.Generic behavior of grazing impact oscillators[J].Physical Review Letters, 1996,76(21): 3951-3954.
[4]HUMPHRIES N, PIIROINEN P T.A discontinuity-geometry view of the relationship between saddle-node and grazing bifurcations[J].Physica D, 2012,241(22): 1911-1918.
[5]BUDD C J, DUX F.Chattering and related behaviour in impact oscillators[J].Philosophical Transactions of the Royal Society A, 1994,347: 365-389.
[6]TOULEMONDE C, GONTIER C.Sticking motions of impact oscillators[J].European Journal of Mechanics A/Solids, 1998,17(2): 339-366.
[7]WAGG D J.Multiple non-smooth events in multi-degree-of-freedom vibro-impact systems[J].Nonlinear Dynamics, 2006,43(1/2): 137-148.
[8]WAGGD J.Rising phenomena and the multi-sliding bifurcation in a two-degree of freedom impact oscillator[J].Chaos Solitions and Fractals, 2003,22(3): 541-548.
[9]PAVLOVSKAIA E, WIERCIGROCH M.Bifurcation analysis of an impact oscillator with a one-sided elastic constraint near grazing[J].Physica D, 2010,239(6): 312-321.
[10]NORDMARK A B, PIIROINEN P T.Simulation and stability analysis of impacting systems with complete chattering[J].Nonlinear Dynamics, 2009,58(1/2): 85-106.
[11]ZHANG Y X, LUO G W, CAO Q J, et al.Wada basin dynamics of a shallow arch oscillator with more than 20 coexisting low-period periodic attractors[J].International Journal of Non-Linear Mechanics, 2014,58: 151-161.
[12]LI G F, DING W C.Global behavior of a vibro-impact system with asymmetric clearances[J].Journal of Sound and Vibration, 2018,423: 180-194.
[13]张惠,卫晓娟,丁旺才.一类弹性碰撞振动系统周期倍化分岔预测及其神经网络控制[J].振动工程学报,2019, 32(4): 626-634.
ZHANG Hui, WEI Xiaojuan, DING Wangcai.The doubling bifurcation prediction and RBF neural network control of a soft-impact vibration system[J].Journal of Vibration Engineering, 2019,32(4): 626-634.
[14]李得洋,丁旺才,丁杰,等.单自由度含对称约束碰振系统周期运动的转迁规律分析[J].振动与冲击,2019,38(22): 52-59.
LI Deyang, DING Wangcai, DING Jie, et al.Transition of periodic motions of a 1DOF vibro-impact system with symmetrical constraints[J].Journal of Vibration and Shock, 2019,38(22): 52-59.
[15]吴丹,丁旺才.含干摩擦碰撞系统的簇发振荡及稳定性分析[J].华中科技大学学报(自然科学版),2020,48(3): 46-51.
WU Dan, DING Wangcai.Bursting oscillations and stability analysis of dry friction-impact vibration system[J].Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020,48(3): 46-51.
[16]李国芳,俞力洋,丁旺才,等.一类无足自驱动系统的运动特性分析[J].振动与冲击,2020,39(14): 9-16.
LI Guofang, YU Liyang, DING Wangcai, et al.Motion characteristics analysis of a wheel-free self-driving system [J].Journal of Vibration and Shock, 2020,39(14): 9-16.
[17]LUO G W, ZHU X F, SHI Y Q.Dynamics of a two-degree-of freedom periodically-forced system with a rigid stop: diversity and evolution of periodic-impact motions[J].Journal of Sound and Vibration, 2015,334: 338-362.
[18]LUO G W, L X H, SHI Y Q.Vibro-impact dynamics of a two-degree-of freedom periodically-forced system with a clearance: diversity and parameter matching of periodic-impact motions[J].International Journal of Non-Linear Mechanics, 2014,65: 173-195.
[19]吕小红,罗冠炜.冲击渐进振动系统的双参数分岔分析[J].振动与冲击,2019,38(7): 50-56.
L Xiaohong, LUO Guanwei.Two-parameter bifurcation analysis for an impact progressive vibration system[J].Journal of Vibration and Shock, 2019,38(7): 50-56.
[20]YAN Y, XU J, WIERCIGROCH M.Chatter in a transverse grinding process [J].Journal of Sound and Vibration, 2014,333(3): 937-953.
[21]YAN Y, XU J, WIERCIGROCH M.Non-linear analysis and quench control of chatter in plunge grinding [J].International Journal of Non-Linear Mechanics, 2015,70: 134-144.
[22]RUSINEK R, WIERCIGROCH M, WAHI P.Orthogonal cutting process modelling considering tool-workpiece frictional effect [J].Procedia CIRP, 2015,31: 429-434.
23]高学军,李映辉,关庆华.车辆系统的多个蛇行运动[J].振动与冲击,2015,34(11): 200-205.
GAO Xuejun, LI Yinghui, GUAN Qinghua.Multiple hunting motions of a railway vehicle system[J].Journal of Vibration and Shock, 2015,34(11): 200-205.
[24]GAO X J, LI Y H, YUE Y, et al.Symmetric/ asymmetric bifurcation behaviours of a bogie system[J].Journal of Sound and Vibration, 2013,332(4): 936-951.
[25]伍新,文桂林,何莉萍,等.振动落砂机系统的拟周期碰撞设计[J].湖南大学学报(自然科学版),2016,43(4): 38-43.
WU Xin, WEN Guilin, HE Liping, et al.Design of quasi-periodic impact motion of an impact shaker system[J].Journal of Hunan University(Natural Sciences), 2016,43(4): 38-43.
[26]石建飞,苟向锋,张艳龙.两自由度减振镗杆系统的安全盆侵蚀与分岔[J].振动与冲击,2018,37(22): 238-244.
SHI Jianfei, GOU Xiangfeng, ZHANG Yanlong.Erosion and bifurcation of the safe basin of a two-degree-of-freedom damping boring bar system[J].Journal of Vibration and Shock, 2018,37(22): 238-244.
[27]ZHAI W, WANG K.Lateral hunting stability of railway vehicles running on elastic track structures[J].Journal of Computational & Nonlinear Dynamics, 2010,5(4): 2040-2049.

PDF(3331 KB)

Accesses

Citation

Detail

段落导航
相关文章

/