[1]SHAW S W, HOLMES P J.A periodically forced piecewise linear oscillator[J].Journal of Sound and Vibration, 1983,90(1): 129-155.
[2]NORDMARK A B.Non-periodic motion caused by grazing incidence in an impact oscillator[J].Journal of Sound and Vibration, 1991,145(2): 279-297.
[3]WEGER J D, BINKS D, MOLENAAR J.Generic behavior of grazing impact oscillators[J].Physical Review Letters, 1996,76(21): 3951-3954.
[4]HUMPHRIES N, PIIROINEN P T.A discontinuity-geometry view of the relationship between saddle-node and grazing bifurcations[J].Physica D, 2012,241(22): 1911-1918.
[5]BUDD C J, DUX F.Chattering and related behaviour in impact oscillators[J].Philosophical Transactions of the Royal Society A, 1994,347: 365-389.
[6]TOULEMONDE C, GONTIER C.Sticking motions of impact oscillators[J].European Journal of Mechanics A/Solids, 1998,17(2): 339-366.
[7]WAGG D J.Multiple non-smooth events in multi-degree-of-freedom vibro-impact systems[J].Nonlinear Dynamics, 2006,43(1/2): 137-148.
[8]WAGGD J.Rising phenomena and the multi-sliding bifurcation in a two-degree of freedom impact oscillator[J].Chaos Solitions and Fractals, 2003,22(3): 541-548.
[9]PAVLOVSKAIA E, WIERCIGROCH M.Bifurcation analysis of an impact oscillator with a one-sided elastic constraint near grazing[J].Physica D, 2010,239(6): 312-321.
[10]NORDMARK A B, PIIROINEN P T.Simulation and stability analysis of impacting systems with complete chattering[J].Nonlinear Dynamics, 2009,58(1/2): 85-106.
[11]ZHANG Y X, LUO G W, CAO Q J, et al.Wada basin dynamics of a shallow arch oscillator with more than 20 coexisting low-period periodic attractors[J].International Journal of Non-Linear Mechanics, 2014,58: 151-161.
[12]LI G F, DING W C.Global behavior of a vibro-impact system with asymmetric clearances[J].Journal of Sound and Vibration, 2018,423: 180-194.
[13]张惠,卫晓娟,丁旺才.一类弹性碰撞振动系统周期倍化分岔预测及其神经网络控制[J].振动工程学报,2019, 32(4): 626-634.
ZHANG Hui, WEI Xiaojuan, DING Wangcai.The doubling bifurcation prediction and RBF neural network control of a soft-impact vibration system[J].Journal of Vibration Engineering, 2019,32(4): 626-634.
[14]李得洋,丁旺才,丁杰,等.单自由度含对称约束碰振系统周期运动的转迁规律分析[J].振动与冲击,2019,38(22): 52-59.
LI Deyang, DING Wangcai, DING Jie, et al.Transition of periodic motions of a 1DOF vibro-impact system with symmetrical constraints[J].Journal of Vibration and Shock, 2019,38(22): 52-59.
[15]吴丹,丁旺才.含干摩擦碰撞系统的簇发振荡及稳定性分析[J].华中科技大学学报(自然科学版),2020,48(3): 46-51.
WU Dan, DING Wangcai.Bursting oscillations and stability analysis of dry friction-impact vibration system[J].Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020,48(3): 46-51.
[16]李国芳,俞力洋,丁旺才,等.一类无足自驱动系统的运动特性分析[J].振动与冲击,2020,39(14): 9-16.
LI Guofang, YU Liyang, DING Wangcai, et al.Motion characteristics analysis of a wheel-free self-driving system [J].Journal of Vibration and Shock, 2020,39(14): 9-16.
[17]LUO G W, ZHU X F, SHI Y Q.Dynamics of a two-degree-of freedom periodically-forced system with a rigid stop: diversity and evolution of periodic-impact motions[J].Journal of Sound and Vibration, 2015,334: 338-362.
[18]LUO G W, L X H, SHI Y Q.Vibro-impact dynamics of a two-degree-of freedom periodically-forced system with a clearance: diversity and parameter matching of periodic-impact motions[J].International Journal of Non-Linear Mechanics, 2014,65: 173-195.
[19]吕小红,罗冠炜.冲击渐进振动系统的双参数分岔分析[J].振动与冲击,2019,38(7): 50-56.
L Xiaohong, LUO Guanwei.Two-parameter bifurcation analysis for an impact progressive vibration system[J].Journal of Vibration and Shock, 2019,38(7): 50-56.
[20]YAN Y, XU J, WIERCIGROCH M.Chatter in a transverse grinding process [J].Journal of Sound and Vibration, 2014,333(3): 937-953.
[21]YAN Y, XU J, WIERCIGROCH M.Non-linear analysis and quench control of chatter in plunge grinding [J].International Journal of Non-Linear Mechanics, 2015,70: 134-144.
[22]RUSINEK R, WIERCIGROCH M, WAHI P.Orthogonal cutting process modelling considering tool-workpiece frictional effect [J].Procedia CIRP, 2015,31: 429-434.
23]高学军,李映辉,关庆华.车辆系统的多个蛇行运动[J].振动与冲击,2015,34(11): 200-205.
GAO Xuejun, LI Yinghui, GUAN Qinghua.Multiple hunting motions of a railway vehicle system[J].Journal of Vibration and Shock, 2015,34(11): 200-205.
[24]GAO X J, LI Y H, YUE Y, et al.Symmetric/ asymmetric bifurcation behaviours of a bogie system[J].Journal of Sound and Vibration, 2013,332(4): 936-951.
[25]伍新,文桂林,何莉萍,等.振动落砂机系统的拟周期碰撞设计[J].湖南大学学报(自然科学版),2016,43(4): 38-43.
WU Xin, WEN Guilin, HE Liping, et al.Design of quasi-periodic impact motion of an impact shaker system[J].Journal of Hunan University(Natural Sciences), 2016,43(4): 38-43.
[26]石建飞,苟向锋,张艳龙.两自由度减振镗杆系统的安全盆侵蚀与分岔[J].振动与冲击,2018,37(22): 238-244.
SHI Jianfei, GOU Xiangfeng, ZHANG Yanlong.Erosion and bifurcation of the safe basin of a two-degree-of-freedom damping boring bar system[J].Journal of Vibration and Shock, 2018,37(22): 238-244.
[27]ZHAI W, WANG K.Lateral hunting stability of railway vehicles running on elastic track structures[J].Journal of Computational & Nonlinear Dynamics, 2010,5(4): 2040-2049.