为合理评估铁路钢管混凝土(concrete-filled-steel-tubular ,CFST)系杆拱桥在移动列车荷载下的冲击系数,以我国高速铁路客运专线某计算跨径为136 m的钢管混凝土系杆拱桥为例,基于车-桥耦合振动的分析方法,建立了考虑桥梁桩-土效应的列车-桥梁动力相互作用模型,基于概率统计学假设检验方法,分析了2种车重、30组轨道不平顺、126种行车速度组合工况下系杆拱桥系梁、吊杆、拱肋的冲击系数。结果表明,系杆拱桥主要受力构件的冲击系数存在差异,其中拱肋的冲击系数最大,系梁的冲击系数次之,吊杆最小。冲击系数的概率分布服从极值I型,在95%的保证率下,算例系杆拱桥的系梁、吊杆和拱肋冲击系数分别约为1.05,1.04和1.08,均大于现有规范的取值。在进行大跨度高速铁路系杆拱桥设计时,应考虑对冲击系数进行必要的放大,以利于桥梁安全。
Abstract
To reasonably calculate the impact factor of concrete-filled-steel-tubular (CFST) tied arch bridges subject to train running load, a train-bridge dynamic model considering soil-pier interaction was established based on the vehicle-bridge coupled dynamics.Taking a certain 136 m-long CFST tied arch bridge for the high-speed railway as an instance, the impact factors of tie beams, hanger rods and arch ribs under different working conditions, were investigated by using the hypothesis testing method of probability statistics.The results show that the impact factors of different components are different.The impact factor of arch rib is the largest, while that of hanger rod is the smallest.The distribution of impact factors follows the type of Extreme Value I.Under the 95% assurance rate, the impact coefficients of tie beam, hanger rod and arch rib are about 1.05, 1.04 and 1.08, respectively, which are higher than those in existing China codes.In the design of long-span high-speed railway tied arch bridges, it is necessary to raise the impact coefficient to ensure the safety of the bridge.
关键词
系杆拱桥 /
冲击系数 /
钢管混凝土(CFST) /
车-桥耦合 /
数值仿真
{{custom_keyword}} /
Key words
tied-arch bridge /
impact factor /
concrete filled-steel tubular(CFST) /
vehicle-bridge coupling /
numerical simulation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]朱敏, 王玉珏, 杨咏漪, 等.高速铁路系杆拱桥设计研究[J].高铁路技术, 2010,1(3):21-26.
ZHU Min, WANG Yujue, YANG Yongyi, et al.Design of tie-arch bridge for high-speed railway[J].High-speed Railway Technology, 2010,1(3): 21-26.
[2]KIMMLE A R, MATOS C G.Impact factor determination for high-speed rail bridges [C]//Structures Congress.Reston: ASCE, 2017.
[3]中华人民共和国行业标准.铁路桥涵设计规范:TBTB 1002—2017[S].北京: 中国铁道出版社, 2017.
[4]HUANG D.Dynamic and impact behavior of half-through arch bridges[J].Journal of Bridge Engineering, 2005, 10(2):133-141.
[5]朱志辉,赵婷婷,王力东,等.基于随机振动模型的重载铁路拱桥吊杆应力冲击系数研究[J].振动工程学报,2017, 30(6):955-964.
ZHU Zhihui, ZHAO Tingting, WANG Lidong, et al.Stress impact factor of the suspenders of heavy-haul railway arch bridge based on random vibration model[J].Journal of Vibration Engineering,2017,30 (6): 955-964.
[6]吴定俊,王小松,项海帆.高速铁路尼尔森拱桥车桥动力特性[J].铁道学报, 2003,25(3):96-100.
WU Dingjun, WANG Xiaosong, XIANG Haifan.The bridge-vehicle dynamics characteristic of Nelson arch bridge in high speed railway [J].Journal of the China Railway Society, 2003, 25(3):96-100.
[7]马继兵, 蒲黔辉, 夏招广.铁路尼尔森体系提篮拱桥动载试验与车桥耦合振动分析[J].振动与冲击, 2008, 27(7): 174-177.
MA Jibing, PU Qianhui, XIA Zhaoguang.Dynamic loading test and vehicle-bridge coupling vibration analysis of railway Nielsen system X-style arch bridge[J].Journal of Vibration and Shock, 2008,27(7):174-177.
[8]DMITRY P, ALEXANDER R, ROMAN K.Parallel computations and co-simulation in universal mechanism software.Part I: algorithms and implementation [J].Transport Problems, 2019, 14(3): 163-175.
[9]李克冰,张楠,方翔宇,等.考虑河流冲刷作用的车桥耦合系统动力分析[J].振动与冲击,2014,33(19):40-47.
LI Kebing, ZHANG Nan, FANG Xiangyu, et al.Dynamic analysis of a vehicle-bridge coupled system considering river scouring[J].Journal of Vibration and Shock, 2014,33 (19): 40-47.
[10]KALKERJ J.A fast algorithm for the simplified theory of rolling contact [J].Vehicle System Dynamics, 1982, 11 (1):1-13.
[11]MIKHEEV G, KRUGOVOVA E, KOVALEV R.Railway vehicle and bridge interaction: some approaches and applications [C]// International Conference on Computer System Design and Operation in Railways and Other Transit Systems.Beijing: COMPRAIL,2010.
[12]赵文博.高速铁路CRTSⅠ型板式无砟轨道路基冻胀影响规律研究[D].北京:中国铁道科学研究院,2017.
[13]SHI X M, CAI C S, CHEN S.Vehicle induced dynamic behavior of short-span slab bridges considering effect of approach slab condition [J].Journal of Bridge Engineering, 2008, 13(1) :83-92.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}